Properties

Label 170352.bl
Number of curves $4$
Conductor $170352$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bl1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 170352.bl have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(7\)\(1 + T\)
\(13\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 2 T + 5 T^{2}\) 1.5.c
\(11\) \( 1 - 4 T + 11 T^{2}\) 1.11.ae
\(17\) \( 1 - 2 T + 17 T^{2}\) 1.17.ac
\(19\) \( 1 + 4 T + 19 T^{2}\) 1.19.e
\(23\) \( 1 + 4 T + 23 T^{2}\) 1.23.e
\(29\) \( 1 - 2 T + 29 T^{2}\) 1.29.ac
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 170352.bl do not have complex multiplication.

Modular form 170352.2.a.bl

Copy content sage:E.q_eigenform(10)
 
\(q - 2 q^{5} - q^{7} + 4 q^{11} + 2 q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 170352.bl

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
170352.bl1 170352y3 \([0, 0, 0, -47613891, 126433153730]\) \(828279937799497/193444524\) \(2788072292043222073344\) \([2]\) \(12386304\) \(3.1056\)  
170352.bl2 170352y2 \([0, 0, 0, -3322371, 1486775810]\) \(281397674377/96589584\) \(1392123887933789896704\) \([2, 2]\) \(6193152\) \(2.7590\)  
170352.bl3 170352y1 \([0, 0, 0, -1375491, -603783934]\) \(19968681097/628992\) \(9065519823744663552\) \([2]\) \(3096576\) \(2.4124\) \(\Gamma_0(N)\)-optimal
170352.bl4 170352y4 \([0, 0, 0, 9819069, 10336221506]\) \(7264187703863/7406095788\) \(-106742388110923279024128\) \([2]\) \(12386304\) \(3.1056\)