Properties

Label 16800.bm
Number of curves $4$
Conductor $16800$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bm1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 16800.bm have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 - T\)
\(5\)\(1\)
\(7\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(11\) \( 1 - 4 T + 11 T^{2}\) 1.11.ae
\(13\) \( 1 + 2 T + 13 T^{2}\) 1.13.c
\(17\) \( 1 - 2 T + 17 T^{2}\) 1.17.ac
\(19\) \( 1 + 19 T^{2}\) 1.19.a
\(23\) \( 1 + 4 T + 23 T^{2}\) 1.23.e
\(29\) \( 1 - 2 T + 29 T^{2}\) 1.29.ac
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 16800.bm do not have complex multiplication.

Modular form 16800.2.a.bm

Copy content sage:E.q_eigenform(10)
 
\(q + q^{3} - q^{7} + q^{9} + 4 q^{11} - 2 q^{13} + 2 q^{17} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 16800.bm

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
16800.bm1 16800bt3 \([0, 1, 0, -1639408, 807355688]\) \(60910917333827912/3255076125\) \(26040609000000000\) \([4]\) \(221184\) \(2.2173\)  
16800.bm2 16800bt2 \([0, 1, 0, -530033, -138659937]\) \(257307998572864/19456203375\) \(1245197016000000000\) \([2]\) \(221184\) \(2.2173\)  
16800.bm3 16800bt1 \([0, 1, 0, -108158, 11105688]\) \(139927692143296/27348890625\) \(27348890625000000\) \([2, 2]\) \(110592\) \(1.8707\) \(\Gamma_0(N)\)-optimal
16800.bm4 16800bt4 \([0, 1, 0, 222592, 66010188]\) \(152461584507448/322998046875\) \(-2583984375000000000\) \([2]\) \(221184\) \(2.2173\)