Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+xy+y=x^3-x^2-37715x-22667277\)
|
(homogenize, simplify) |
\(y^2z+xyz+yz^2=x^3-x^2z-37715xz^2-22667277z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-603435x-1451309146\)
|
(homogenize, minimize) |
Mordell-Weil group structure
trivial
Invariants
Conductor: | $N$ | = | \( 16758 \) | = | $2 \cdot 3^{2} \cdot 7^{2} \cdot 19$ |
|
Discriminant: | $\Delta$ | = | $-218715344099868672$ | = | $-1 \cdot 2^{27} \cdot 3^{6} \cdot 7^{6} \cdot 19 $ |
|
j-invariant: | $j$ | = | \( -\frac{69173457625}{2550136832} \) | = | $-1 \cdot 2^{-27} \cdot 5^{3} \cdot 19^{-1} \cdot 821^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.0074308298189550792022609103$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.48516961095724358095196192012$ |
|
||
$abc$ quality: | $Q$ | ≈ | $1.054621266416818$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.8728941079606285$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |
|
Mordell-Weil rank: | $r$ | = | $ 0$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |
|
Real period: | $\Omega$ | ≈ | $0.13752325881005933678826267395$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 27 $ = $ 3^{3}\cdot1\cdot1\cdot1 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |
|
Special value: | $ L(E,1)$ | ≈ | $3.7131279878716020932830921965 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $1$ (exact) |
|
BSD formula
$$\begin{aligned} 3.713127988 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.137523 \cdot 1.000000 \cdot 27}{1^2} \\ & \approx 3.713127988\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
Modular degree: | 204120 |
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $27$ | $I_{27}$ | split multiplicative | -1 | 1 | 27 | 27 |
$3$ | $1$ | $I_0^{*}$ | additive | -1 | 2 | 6 | 0 |
$7$ | $1$ | $I_0^{*}$ | additive | -1 | 2 | 6 | 0 |
$19$ | $1$ | $I_{1}$ | nonsplit multiplicative | 1 | 1 | 1 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$3$ | 3B | 27.36.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 28728 = 2^{3} \cdot 3^{3} \cdot 7 \cdot 19 \), index $1296$, genus $43$, and generators
$\left(\begin{array}{rr} 24623 & 0 \\ 0 & 28727 \end{array}\right),\left(\begin{array}{rr} 16444 & 16443 \\ 26145 & 3592 \end{array}\right),\left(\begin{array}{rr} 31 & 36 \\ 22906 & 21967 \end{array}\right),\left(\begin{array}{rr} 28675 & 54 \\ 28674 & 55 \end{array}\right),\left(\begin{array}{rr} 23687 & 24549 \\ 14763 & 14272 \end{array}\right),\left(\begin{array}{rr} 1 & 54 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 28 & 27 \\ 729 & 703 \end{array}\right),\left(\begin{array}{rr} 13000 & 24633 \\ 791 & 4768 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 54 & 1 \end{array}\right),\left(\begin{array}{rr} 7183 & 4158 \\ 0 & 1 \end{array}\right)$.
The torsion field $K:=\Q(E[28728])$ is a degree-$92643856220160$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/28728\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | split multiplicative | $4$ | \( 8379 = 3^{2} \cdot 7^{2} \cdot 19 \) |
$3$ | additive | $2$ | \( 931 = 7^{2} \cdot 19 \) |
$7$ | additive | $26$ | \( 342 = 2 \cdot 3^{2} \cdot 19 \) |
$19$ | nonsplit multiplicative | $20$ | \( 882 = 2 \cdot 3^{2} \cdot 7^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
3 and 9.
Its isogeny class 16758bc
consists of 3 curves linked by isogenies of
degrees dividing 9.
Twists
The minimal quadratic twist of this elliptic curve is 38a2, its twist by $21$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{-7}) \) | \(\Z/3\Z\) | not in database |
$3$ | 3.1.152.1 | \(\Z/2\Z\) | not in database |
$6$ | 6.0.3511808.1 | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$6$ | 6.2.1206902781.3 | \(\Z/3\Z\) | not in database |
$6$ | 6.0.293277375783.2 | \(\Z/9\Z\) | not in database |
$6$ | 6.0.7924672.1 | \(\Z/6\Z\) | not in database |
$12$ | deg 12 | \(\Z/4\Z\) | not in database |
$12$ | deg 12 | \(\Z/3\Z \oplus \Z/3\Z\) | not in database |
$12$ | 12.0.5939983366575355881.2 | \(\Z/9\Z\) | not in database |
$12$ | deg 12 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$18$ | 18.2.166365775161500534067797751313465344.1 | \(\Z/6\Z\) | not in database |
$18$ | 18.0.2387167035775281143789161628406042068779008.1 | \(\Z/18\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | split | add | ss | add | ord | ord | ord | nonsplit | ord | ord | ord | ord | ss | ord | ss |
$\lambda$-invariant(s) | 1 | - | 0,0 | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0,0 | 0 | 0,0 |
$\mu$-invariant(s) | 0 | - | 0,0 | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0,0 | 0 | 0,0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.