Properties

Label 167310.s
Number of curves $4$
Conductor $167310$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("s1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 167310.s have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1\)
\(5\)\(1 + T\)
\(11\)\(1 - T\)
\(13\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + 7 T^{2}\) 1.7.a
\(17\) \( 1 - 2 T + 17 T^{2}\) 1.17.ac
\(19\) \( 1 + 8 T + 19 T^{2}\) 1.19.i
\(23\) \( 1 + 4 T + 23 T^{2}\) 1.23.e
\(29\) \( 1 + 2 T + 29 T^{2}\) 1.29.c
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 167310.s do not have complex multiplication.

Modular form 167310.2.a.s

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{4} - q^{5} - q^{8} + q^{10} + q^{11} + q^{16} + 2 q^{17} - 8 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 167310.s

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
167310.s1 167310ej4 \([1, -1, 0, -6332715, -4689228569]\) \(7981893677157049/1917731420550\) \(6748005471333979688550\) \([2]\) \(11796480\) \(2.8998\)  
167310.s2 167310ej2 \([1, -1, 0, -2149965, 1152400081]\) \(312341975961049/17862322500\) \(62852935853844922500\) \([2, 2]\) \(5898240\) \(2.5532\)  
167310.s3 167310ej1 \([1, -1, 0, -2119545, 1188240925]\) \(299270638153369/1069200\) \(3762240829261200\) \([2]\) \(2949120\) \(2.2066\) \(\Gamma_0(N)\)-optimal
167310.s4 167310ej3 \([1, -1, 0, 1546065, 4699849675]\) \(116149984977671/2779502343750\) \(-9780356530755189843750\) \([2]\) \(11796480\) \(2.8998\)