Properties

Label 16731.l
Number of curves $2$
Conductor $16731$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("l1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 16731.l have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(3\)\(1\)
\(11\)\(1 - T\)
\(13\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 - T + 2 T^{2}\) 1.2.ab
\(5\) \( 1 + 2 T + 5 T^{2}\) 1.5.c
\(7\) \( 1 - 2 T + 7 T^{2}\) 1.7.ac
\(17\) \( 1 + 4 T + 17 T^{2}\) 1.17.e
\(19\) \( 1 + 6 T + 19 T^{2}\) 1.19.g
\(23\) \( 1 + 8 T + 23 T^{2}\) 1.23.i
\(29\) \( 1 + 29 T^{2}\) 1.29.a
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 16731.l do not have complex multiplication.

Modular form 16731.2.a.l

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} - q^{4} - 2 q^{5} + 2 q^{7} - 3 q^{8} - 2 q^{10} + q^{11} + 2 q^{14} - q^{16} - 4 q^{17} - 6 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 16731.l

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
16731.l1 16731c2 \([1, -1, 0, -303978, -63051299]\) \(23835655373139/584043889\) \(76114844095145427\) \([2]\) \(161280\) \(2.0232\)  
16731.l2 16731c1 \([1, -1, 0, 2757, -3115280]\) \(17779581/32166277\) \(-4192032833642511\) \([2]\) \(80640\) \(1.6766\) \(\Gamma_0(N)\)-optimal