Properties

Label 166518cg
Number of curves $4$
Conductor $166518$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("cg1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 166518cg have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 - T\)
\(3\)\(1\)
\(11\)\(1 + T\)
\(29\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 - 3 T + 5 T^{2}\) 1.5.ad
\(7\) \( 1 + T + 7 T^{2}\) 1.7.b
\(13\) \( 1 + 4 T + 13 T^{2}\) 1.13.e
\(17\) \( 1 - 3 T + 17 T^{2}\) 1.17.ad
\(19\) \( 1 - T + 19 T^{2}\) 1.19.ab
\(23\) \( 1 - 6 T + 23 T^{2}\) 1.23.ag
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 166518cg do not have complex multiplication.

Modular form 166518.2.a.cg

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{4} + 2 q^{7} - q^{8} + q^{11} + 2 q^{13} - 2 q^{14} + q^{16} + 6 q^{17} - 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 166518cg

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
166518.p4 166518cg1 \([1, -1, 0, -54402, 4722964]\) \(1108717875/45056\) \(723609707876352\) \([2]\) \(774144\) \(1.6171\) \(\Gamma_0(N)\)-optimal
166518.p2 166518cg2 \([1, -1, 0, -861762, 308128852]\) \(4406910829875/7744\) \(124370418541248\) \([2]\) \(1548288\) \(1.9637\)  
166518.p3 166518cg3 \([1, -1, 0, -659922, -204773500]\) \(2714704875/21296\) \(249331596570566928\) \([2]\) \(2322432\) \(2.1664\)  
166518.p1 166518cg4 \([1, -1, 0, -1114062, 113396984]\) \(13060888875/7086244\) \(82965088758856145292\) \([2]\) \(4644864\) \(2.5130\)