Show commands: SageMath
Rank
The elliptic curves in class 1664s have rank \(1\).
L-function data
| Bad L-factors: |
| ||||||||||||||||||||||||||||||
| Good L-factors: |
| ||||||||||||||||||||||||||||||
| See L-function page for more information | |||||||||||||||||||||||||||||||
Complex multiplication
The elliptic curves in class 1664s do not have complex multiplication.Modular form 1664.2.a.s
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with Cremona labels.
Elliptic curves in class 1664s
| LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
|---|---|---|---|---|---|---|---|---|
| 1664.f2 | 1664s1 | \([0, 1, 0, -7, -15]\) | \(-170368/169\) | \(-43264\) | \([2]\) | \(96\) | \(-0.41460\) | \(\Gamma_0(N)\)-optimal |
| 1664.f1 | 1664s2 | \([0, 1, 0, -137, -665]\) | \(34967264/13\) | \(106496\) | \([2]\) | \(192\) | \(-0.068030\) |