Properties

Label 165825a
Number of curves $1$
Conductor $165825$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("a1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 165825a1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(3\)\(1\)
\(5\)\(1\)
\(11\)\(1 + T\)
\(67\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 + 2 T + 2 T^{2}\) 1.2.c
\(7\) \( 1 + 4 T + 7 T^{2}\) 1.7.e
\(13\) \( 1 - 6 T + 13 T^{2}\) 1.13.ag
\(17\) \( 1 - 5 T + 17 T^{2}\) 1.17.af
\(19\) \( 1 - 5 T + 19 T^{2}\) 1.19.af
\(23\) \( 1 - T + 23 T^{2}\) 1.23.ab
\(29\) \( 1 - 5 T + 29 T^{2}\) 1.29.af
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 165825a do not have complex multiplication.

Modular form 165825.2.a.a

Copy content sage:E.q_eigenform(10)
 
\(q - 2 q^{2} + 2 q^{4} - 4 q^{7} - q^{11} + 6 q^{13} + 8 q^{14} - 4 q^{16} + 5 q^{17} + 5 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 165825a

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
165825.a1 165825a1 \([0, 0, 1, 32875575, 1046428197156]\) \(344981836779052322816/41728985197282986075\) \(-475319222012801513260546875\) \([]\) \(122204160\) \(3.7982\) \(\Gamma_0(N)\)-optimal