Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2+xy=x^3+x^2-2450x+34875\)
|
(homogenize, simplify) |
|
\(y^2z+xyz=x^3+x^2z-2450xz^2+34875z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-3175875x+1674762750\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(155/4, -155/8)$ | $0$ | $2$ |
Integral points
None
Invariants
| Conductor: | $N$ | = | \( 16575 \) | = | $3 \cdot 5^{2} \cdot 13 \cdot 17$ |
|
| Discriminant: | $\Delta$ | = | $385151203125$ | = | $3^{8} \cdot 5^{6} \cdot 13 \cdot 17^{2} $ |
|
| j-invariant: | $j$ | = | \( \frac{104154702625}{24649677} \) | = | $3^{-8} \cdot 5^{3} \cdot 13^{-1} \cdot 17^{-2} \cdot 941^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $0.93461538288834733322973343820$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.12989642667129714592935377159$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $0.9038476152848134$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $3.6050874303131426$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |
|
| Mordell-Weil rank: | $r$ | = | $ 0$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |
|
| Real period: | $\Omega$ | ≈ | $0.89392303631716656474883657288$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 8 $ = $ 2\cdot2\cdot1\cdot2 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
| Special value: | $ L(E,1)$ | ≈ | $1.7878460726343331294976731458 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $1$ (exact) |
|
BSD formula
$$\begin{aligned} 1.787846073 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.893923 \cdot 1.000000 \cdot 8}{2^2} \\ & \approx 1.787846073\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
| Modular degree: | 18432 |
|
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $3$ | $2$ | $I_{8}$ | nonsplit multiplicative | 1 | 1 | 8 | 8 |
| $5$ | $2$ | $I_0^{*}$ | additive | 1 | 2 | 6 | 0 |
| $13$ | $1$ | $I_{1}$ | split multiplicative | -1 | 1 | 1 | 1 |
| $17$ | $2$ | $I_{2}$ | nonsplit multiplicative | 1 | 1 | 2 | 2 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2B | 2.3.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 884 = 2^{2} \cdot 13 \cdot 17 \), index $12$, genus $0$, and generators
$\left(\begin{array}{rr} 1 & 0 \\ 4 & 1 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 8 & 11 \end{array}\right),\left(\begin{array}{rr} 1 & 2 \\ 2 & 5 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 881 & 4 \\ 880 & 5 \end{array}\right),\left(\begin{array}{rr} 105 & 4 \\ 210 & 9 \end{array}\right),\left(\begin{array}{rr} 342 & 1 \\ 271 & 0 \end{array}\right),\left(\begin{array}{rr} 665 & 222 \\ 220 & 663 \end{array}\right)$.
The torsion field $K:=\Q(E[884])$ is a degree-$16424239104$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/884\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | good | $2$ | \( 325 = 5^{2} \cdot 13 \) |
| $3$ | nonsplit multiplicative | $4$ | \( 5525 = 5^{2} \cdot 13 \cdot 17 \) |
| $5$ | additive | $14$ | \( 663 = 3 \cdot 13 \cdot 17 \) |
| $13$ | split multiplicative | $14$ | \( 1275 = 3 \cdot 5^{2} \cdot 17 \) |
| $17$ | nonsplit multiplicative | $18$ | \( 975 = 3 \cdot 5^{2} \cdot 13 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2.
Its isogeny class 16575.g
consists of 2 curves linked by isogenies of
degree 2.
Twists
The minimal quadratic twist of this elliptic curve is 663.b1, its twist by $5$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{13}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
| $4$ | 4.4.1502800.2 | \(\Z/4\Z\) | not in database |
| $8$ | deg 8 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | 8.8.381670924960000.2 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | deg 8 | \(\Z/6\Z\) | not in database |
| $16$ | deg 16 | \(\Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 13 | 17 |
|---|---|---|---|---|---|
| Reduction type | ord | nonsplit | add | split | nonsplit |
| $\lambda$-invariant(s) | 6 | 0 | - | 3 | 0 |
| $\mu$-invariant(s) | 0 | 0 | - | 0 | 0 |
All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 3$ of good reduction are zero.
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.