Learn more

Refine search


Results (29 matches)

  displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images MW-generators
663.b1 663.b \( 3 \cdot 13 \cdot 17 \) $1$ $\Z/2\Z$ $0.204192024$ $[1, 0, 0, -98, 279]$ \(y^2+xy=x^3-98x+279\) 2.3.0.a.1, 26.6.0.b.1, 68.6.0.c.1, 884.12.0.? $[(1, 13)]$
1989.d1 1989.d \( 3^{2} \cdot 13 \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -882, -7533]$ \(y^2+xy=x^3-x^2-882x-7533\) 2.3.0.a.1, 26.6.0.b.1, 68.6.0.c.1, 884.12.0.? $[ ]$
8619.j1 8619.j \( 3 \cdot 13^{2} \cdot 17 \) $1$ $\Z/2\Z$ $1.480603891$ $[1, 0, 1, -16566, 629527]$ \(y^2+xy+y=x^3-16566x+629527\) 2.3.0.a.1, 26.6.0.b.1, 68.6.0.c.1, 884.12.0.? $[(-13, 924)]$
10608.h1 10608.h \( 2^{4} \cdot 3 \cdot 13 \cdot 17 \) $1$ $\Z/2\Z$ $1.376869513$ $[0, -1, 0, -1568, -17856]$ \(y^2=x^3-x^2-1568x-17856\) 2.3.0.a.1, 26.6.0.b.1, 68.6.0.c.1, 884.12.0.? $[(-14, 34)]$
11271.b1 11271.b \( 3 \cdot 13 \cdot 17^{2} \) $1$ $\Z/2\Z$ $2.772723454$ $[1, 1, 1, -28328, 1399052]$ \(y^2+xy+y=x^3+x^2-28328x+1399052\) 2.3.0.a.1, 26.6.0.b.1, 68.6.0.c.1, 884.12.0.? $[(239, 2770)]$
16575.g1 16575.g \( 3 \cdot 5^{2} \cdot 13 \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -2450, 34875]$ \(y^2+xy=x^3+x^2-2450x+34875\) 2.3.0.a.1, 26.6.0.b.1, 68.6.0.c.1, 884.12.0.? $[ ]$
25857.g1 25857.g \( 3^{2} \cdot 13^{2} \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, -149090, -16997236]$ \(y^2+xy+y=x^3-x^2-149090x-16997236\) 2.3.0.a.1, 26.6.0.b.1, 68.6.0.c.1, 884.12.0.? $[ ]$
31824.t1 31824.t \( 2^{4} \cdot 3^{2} \cdot 13 \cdot 17 \) $1$ $\Z/2\Z$ $1.215211072$ $[0, 0, 0, -14115, 496226]$ \(y^2=x^3-14115x+496226\) 2.3.0.a.1, 26.6.0.b.1, 68.6.0.c.1, 884.12.0.? $[(337, 5832)]$
32487.b1 32487.b \( 3 \cdot 7^{2} \cdot 13 \cdot 17 \) $1$ $\Z/2\Z$ $1.892332799$ $[1, 1, 1, -4803, -100500]$ \(y^2+xy+y=x^3+x^2-4803x-100500\) 2.3.0.a.1, 26.6.0.b.1, 68.6.0.c.1, 884.12.0.? $[(-35, 179)]$
33813.k1 33813.k \( 3^{2} \cdot 13 \cdot 17^{2} \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -254952, -38029361]$ \(y^2+xy=x^3-x^2-254952x-38029361\) 2.3.0.a.1, 26.6.0.b.1, 68.6.0.c.1, 884.12.0.? $[ ]$
42432.m1 42432.m \( 2^{6} \cdot 3 \cdot 13 \cdot 17 \) $1$ $\Z/2\Z$ $3.115943302$ $[0, -1, 0, -6273, 149121]$ \(y^2=x^3-x^2-6273x+149121\) 2.3.0.a.1, 26.6.0.b.1, 68.6.0.c.1, 884.12.0.? $[(80, 391)]$
42432.bv1 42432.bv \( 2^{6} \cdot 3 \cdot 13 \cdot 17 \) $1$ $\Z/2\Z$ $1.830403660$ $[0, 1, 0, -6273, -149121]$ \(y^2=x^3+x^2-6273x-149121\) 2.3.0.a.1, 26.6.0.b.1, 68.6.0.c.1, 884.12.0.? $[(-27, 36)]$
49725.i1 49725.i \( 3^{2} \cdot 5^{2} \cdot 13 \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, -22055, -963678]$ \(y^2+xy+y=x^3-x^2-22055x-963678\) 2.3.0.a.1, 26.6.0.b.1, 68.6.0.c.1, 884.12.0.? $[ ]$
80223.m1 80223.m \( 3 \cdot 11^{2} \cdot 13 \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -11861, -383209]$ \(y^2+xy+y=x^3-11861x-383209\) 2.3.0.a.1, 26.6.0.b.1, 68.6.0.c.1, 884.12.0.? $[ ]$
97461.t1 97461.t \( 3^{2} \cdot 7^{2} \cdot 13 \cdot 17 \) $1$ $\Z/2\Z$ $4.749373430$ $[1, -1, 0, -43227, 2670268]$ \(y^2+xy=x^3-x^2-43227x+2670268\) 2.3.0.a.1, 26.6.0.b.1, 68.6.0.c.1, 884.12.0.? $[(-232, 530)]$
127296.br1 127296.br \( 2^{6} \cdot 3^{2} \cdot 13 \cdot 17 \) $1$ $\Z/2\Z$ $4.694015636$ $[0, 0, 0, -56460, -3969808]$ \(y^2=x^3-56460x-3969808\) 2.3.0.a.1, 26.6.0.b.1, 68.6.0.c.1, 884.12.0.? $[(-172, 808)]$
127296.cm1 127296.cm \( 2^{6} \cdot 3^{2} \cdot 13 \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -56460, 3969808]$ \(y^2=x^3-56460x+3969808\) 2.3.0.a.1, 26.6.0.b.1, 68.6.0.c.1, 884.12.0.? $[ ]$
137904.r1 137904.r \( 2^{4} \cdot 3 \cdot 13^{2} \cdot 17 \) $1$ $\Z/2\Z$ $2.825667970$ $[0, -1, 0, -265048, -40289744]$ \(y^2=x^3-x^2-265048x-40289744\) 2.3.0.a.1, 26.6.0.b.1, 68.6.0.c.1, 884.12.0.? $[(-238, 3042)]$
146523.u1 146523.u \( 3 \cdot 13^{2} \cdot 17^{2} \) $1$ $\Z/2\Z$ $9.694000073$ $[1, 1, 0, -4787435, 3097654812]$ \(y^2+xy=x^3+x^2-4787435x+3097654812\) 2.3.0.a.1, 26.6.0.b.1, 68.6.0.c.1, 884.12.0.? $[(9807557/28, 30129805523/28)]$
180336.ck1 180336.ck \( 2^{4} \cdot 3 \cdot 13 \cdot 17^{2} \) $1$ $\Z/2\Z$ $1.208445447$ $[0, 1, 0, -453248, -90445836]$ \(y^2=x^3+x^2-453248x-90445836\) 2.3.0.a.1, 26.6.0.b.1, 68.6.0.c.1, 884.12.0.? $[(-380, 5202)]$
215475.m1 215475.m \( 3 \cdot 5^{2} \cdot 13^{2} \cdot 17 \) $1$ $\Z/2\Z$ $1.726157098$ $[1, 1, 1, -414138, 78690906]$ \(y^2+xy+y=x^3+x^2-414138x+78690906\) 2.3.0.a.1, 26.6.0.b.1, 68.6.0.c.1, 884.12.0.? $[(590, 6042)]$
239343.e1 239343.e \( 3 \cdot 13 \cdot 17 \cdot 19^{2} \) $2$ $\Z/2\Z$ $17.72346032$ $[1, 1, 0, -35385, -1984428]$ \(y^2+xy=x^3+x^2-35385x-1984428\) 2.3.0.a.1, 26.6.0.b.1, 68.6.0.c.1, 884.12.0.? $[(847/2, 1319/2), (-273/2, 3027/2)]$
240669.o1 240669.o \( 3^{2} \cdot 11^{2} \cdot 13 \cdot 17 \) $1$ $\Z/2\Z$ $3.785960677$ $[1, -1, 1, -106745, 10346636]$ \(y^2+xy+y=x^3-x^2-106745x+10346636\) 2.3.0.a.1, 26.6.0.b.1, 68.6.0.c.1, 884.12.0.? $[(-366, 718)]$
265200.ew1 265200.ew \( 2^{4} \cdot 3 \cdot 5^{2} \cdot 13 \cdot 17 \) $2$ $\Z/2\Z$ $1.573926533$ $[0, 1, 0, -39208, -2310412]$ \(y^2=x^3+x^2-39208x-2310412\) 2.3.0.a.1, 26.6.0.b.1, 68.6.0.c.1, 884.12.0.? $[(-82, 600), (-106, 816)]$
281775.bw1 281775.bw \( 3 \cdot 5^{2} \cdot 13 \cdot 17^{2} \) $1$ $\Z/2\Z$ $2.951939695$ $[1, 0, 1, -708201, 176297923]$ \(y^2+xy+y=x^3-708201x+176297923\) 2.3.0.a.1, 26.6.0.b.1, 68.6.0.c.1, 884.12.0.? $[(41, 12117)]$
350727.f1 350727.f \( 3 \cdot 13 \cdot 17 \cdot 23^{2} \) $1$ $\Z/2\Z$ $1.245484168$ $[1, 0, 0, -51853, -3498292]$ \(y^2+xy=x^3-51853x-3498292\) 2.3.0.a.1, 26.6.0.b.1, 68.6.0.c.1, 884.12.0.? $[(-163, 875)]$
413712.co1 413712.co \( 2^{4} \cdot 3^{2} \cdot 13^{2} \cdot 17 \) $1$ $\Z/2\Z$ $2.470531998$ $[0, 0, 0, -2385435, 1090208522]$ \(y^2=x^3-2385435x+1090208522\) 2.3.0.a.1, 26.6.0.b.1, 68.6.0.c.1, 884.12.0.? $[(493, 5832)]$
422331.bm1 422331.bm \( 3 \cdot 7^{2} \cdot 13^{2} \cdot 17 \) $2$ $\Z/2\Z$ $12.21697675$ $[1, 1, 0, -811710, -216739557]$ \(y^2+xy=x^3+x^2-811710x-216739557\) 2.3.0.a.1, 26.6.0.b.1, 68.6.0.c.1, 884.12.0.? $[(-658, 6075), (-1557/2, 52425/2)]$
439569.v1 439569.v \( 3^{2} \cdot 13^{2} \cdot 17^{2} \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, -43086920, -83679766842]$ \(y^2+xy+y=x^3-x^2-43086920x-83679766842\) 2.3.0.a.1, 26.6.0.b.1, 68.6.0.c.1, 884.12.0.? $[ ]$
  displayed columns for results