Properties

Label 16562br
Number of curves $1$
Conductor $16562$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("br1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 16562br1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 - T\)
\(7\)\(1\)
\(13\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 - T + 3 T^{2}\) 1.3.ab
\(5\) \( 1 - 3 T + 5 T^{2}\) 1.5.ad
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(17\) \( 1 - 3 T + 17 T^{2}\) 1.17.ad
\(19\) \( 1 - 6 T + 19 T^{2}\) 1.19.ag
\(23\) \( 1 - 6 T + 23 T^{2}\) 1.23.ag
\(29\) \( 1 + 29 T^{2}\) 1.29.a
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 16562br do not have complex multiplication.

Modular form 16562.2.a.br

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} - 3 q^{3} + q^{4} - 3 q^{6} + q^{8} + 6 q^{9} + 5 q^{11} - 3 q^{12} + q^{16} + 4 q^{17} + 6 q^{18} + 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 16562br

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
16562.bb1 16562br1 \([1, -1, 1, -183735, -661942641]\) \(-1207949625/332678528\) \(-188917906865460875648\) \([]\) \(1128960\) \(2.5699\) \(\Gamma_0(N)\)-optimal