Properties

Label 164934.bu
Number of curves $2$
Conductor $164934$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bu1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 164934.bu have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1\)
\(7\)\(1\)
\(11\)\(1 + T\)
\(17\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 - 4 T + 5 T^{2}\) 1.5.ae
\(13\) \( 1 + 13 T^{2}\) 1.13.a
\(19\) \( 1 + 19 T^{2}\) 1.19.a
\(23\) \( 1 - 6 T + 23 T^{2}\) 1.23.ag
\(29\) \( 1 - 2 T + 29 T^{2}\) 1.29.ac
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 164934.bu do not have complex multiplication.

Modular form 164934.2.a.bu

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{4} + 4 q^{5} - q^{8} - 4 q^{10} - q^{11} + q^{16} - q^{17} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 164934.bu

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
164934.bu1 164934dv1 \([1, -1, 0, -86445, -9754907]\) \(832972004929/610368\) \(52348895742528\) \([2]\) \(1105920\) \(1.5666\) \(\Gamma_0(N)\)-optimal
164934.bu2 164934dv2 \([1, -1, 0, -68805, -13865027]\) \(-420021471169/727634952\) \(-62406427337061192\) \([2]\) \(2211840\) \(1.9132\)