Properties

Label 1638.k
Number of curves $1$
Conductor $1638$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("k1")
 
E.isogeny_class()
 

Elliptic curves in class 1638.k

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
1638.k1 1638r1 \([1, -1, 1, -41477, -3246595]\) \(-10824513276632329/21926008832\) \(-15984060438528\) \([]\) \(9240\) \(1.4205\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 1638.k1 has rank \(0\).

Complex multiplication

The elliptic curves in class 1638.k do not have complex multiplication.

Modular form 1638.2.a.k

sage: E.q_eigenform(10)
 
\(q + q^{2} + q^{4} - 4 q^{5} - q^{7} + q^{8} - 4 q^{10} + q^{11} + q^{13} - q^{14} + q^{16} - 4 q^{17} + 2 q^{19} + O(q^{20})\) Copy content Toggle raw display