Learn more

Refine search


Results (42 matches)

  displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images
1638.a1 1638.a \( 2 \cdot 3^{2} \cdot 7 \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -904356, 333142096]$ \(y^2+xy=x^3-x^2-904356x+333142096\) 2184.2.0.?
1638.b1 1638.b \( 2 \cdot 3^{2} \cdot 7 \cdot 13 \) $1$ $\Z/3\Z$ $1.084139296$ $[1, -1, 0, -21, 63]$ \(y^2+xy=x^3-x^2-21x+63\) 3.8.0-3.a.1.2, 2184.16.0.?
1638.b2 1638.b \( 2 \cdot 3^{2} \cdot 7 \cdot 13 \) $1$ $\mathsf{trivial}$ $0.361379765$ $[1, -1, 0, 174, -964]$ \(y^2+xy=x^3-x^2+174x-964\) 3.8.0-3.a.1.1, 2184.16.0.?
1638.c1 1638.c \( 2 \cdot 3^{2} \cdot 7 \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -532203, -149255515]$ \(y^2+xy=x^3-x^2-532203x-149255515\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.p.1, 24.24.0-8.p.1.5, 56.24.0.bp.1, $\ldots$
1638.c2 1638.c \( 2 \cdot 3^{2} \cdot 7 \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -281643, 56492261]$ \(y^2+xy=x^3-x^2-281643x+56492261\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.k.1, 12.12.0-4.c.1.1, 24.24.0-8.k.1.1, $\ldots$
1638.c3 1638.c \( 2 \cdot 3^{2} \cdot 7 \cdot 13 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, -1, 0, -38283, -1573435]$ \(y^2+xy=x^3-x^2-38283x-1573435\) 2.6.0.a.1, 8.12.0.a.1, 12.12.0-2.a.1.1, 24.24.0-8.a.1.2, 28.12.0.b.1, $\ldots$
1638.c4 1638.c \( 2 \cdot 3^{2} \cdot 7 \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, 7797, -181819]$ \(y^2+xy=x^3-x^2+7797x-181819\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.p.1, 12.12.0-4.c.1.2, 14.6.0.b.1, $\ldots$
1638.d1 1638.d \( 2 \cdot 3^{2} \cdot 7 \cdot 13 \) $1$ $\Z/2\Z$ $1.657050101$ $[1, -1, 0, -3753, -87561]$ \(y^2+xy=x^3-x^2-3753x-87561\) 2.3.0.a.1, 4.6.0.c.1, 24.12.0-4.c.1.2, 52.12.0-4.c.1.1, 56.12.0.bb.1, $\ldots$
1638.d2 1638.d \( 2 \cdot 3^{2} \cdot 7 \cdot 13 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $0.828525050$ $[1, -1, 0, -243, -1215]$ \(y^2+xy=x^3-x^2-243x-1215\) 2.6.0.a.1, 24.12.0-2.a.1.1, 52.12.0-2.a.1.1, 56.12.0.a.1, 84.12.0.?, $\ldots$
1638.d3 1638.d \( 2 \cdot 3^{2} \cdot 7 \cdot 13 \) $1$ $\Z/2\Z$ $0.414262525$ $[1, -1, 0, -63, 189]$ \(y^2+xy=x^3-x^2-63x+189\) 2.3.0.a.1, 4.6.0.c.1, 24.12.0-4.c.1.6, 52.12.0-4.c.1.2, 56.12.0.bb.1, $\ldots$
1638.d4 1638.d \( 2 \cdot 3^{2} \cdot 7 \cdot 13 \) $1$ $\Z/2\Z$ $1.657050101$ $[1, -1, 0, 387, -6885]$ \(y^2+xy=x^3-x^2+387x-6885\) 2.3.0.a.1, 4.6.0.c.1, 24.12.0-4.c.1.1, 56.12.0.v.1, 84.12.0.?, $\ldots$
1638.e1 1638.e \( 2 \cdot 3^{2} \cdot 7 \cdot 13 \) $1$ $\Z/2\Z$ $0.978488052$ $[1, -1, 0, -1932, -14896]$ \(y^2+xy=x^3-x^2-1932x-14896\) 2.3.0.a.1, 3.8.0-3.a.1.1, 6.24.0-6.a.1.2, 12.48.0-12.j.1.6, 364.6.0.?, $\ldots$
1638.e2 1638.e \( 2 \cdot 3^{2} \cdot 7 \cdot 13 \) $1$ $\Z/6\Z$ $2.935464157$ $[1, -1, 0, -957, 11637]$ \(y^2+xy=x^3-x^2-957x+11637\) 2.3.0.a.1, 3.8.0-3.a.1.2, 6.24.0-6.a.1.4, 12.48.0-12.j.1.8, 364.6.0.?, $\ldots$
1638.e3 1638.e \( 2 \cdot 3^{2} \cdot 7 \cdot 13 \) $1$ $\Z/6\Z$ $1.467732078$ $[1, -1, 0, -897, 13113]$ \(y^2+xy=x^3-x^2-897x+13113\) 2.3.0.a.1, 3.8.0-3.a.1.2, 6.48.0-6.b.1.2, 364.6.0.?, 1092.96.1.?
1638.e4 1638.e \( 2 \cdot 3^{2} \cdot 7 \cdot 13 \) $1$ $\Z/2\Z$ $0.489244026$ $[1, -1, 0, 6708, -116848]$ \(y^2+xy=x^3-x^2+6708x-116848\) 2.3.0.a.1, 3.8.0-3.a.1.1, 6.48.0-6.b.1.1, 364.6.0.?, 1092.96.1.?
1638.f1 1638.f \( 2 \cdot 3^{2} \cdot 7 \cdot 13 \) $0$ $\Z/3\Z$ $1$ $[1, -1, 0, -140967, 20406843]$ \(y^2+xy=x^3-x^2-140967x+20406843\) 3.8.0-3.a.1.2, 9.24.0-9.a.1.2, 728.2.0.?, 819.72.0.?, 2184.16.0.?, $\ldots$
1638.f2 1638.f \( 2 \cdot 3^{2} \cdot 7 \cdot 13 \) $0$ $\Z/3\Z$ $1$ $[1, -1, 0, -1737, 28485]$ \(y^2+xy=x^3-x^2-1737x+28485\) 3.24.0-3.a.1.1, 728.2.0.?, 819.72.0.?, 2184.48.1.?, 6552.144.3.?
1638.f3 1638.f \( 2 \cdot 3^{2} \cdot 7 \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, 63, 189]$ \(y^2+xy=x^3-x^2+63x+189\) 3.8.0-3.a.1.1, 9.24.0-9.a.1.1, 728.2.0.?, 819.72.0.?, 2184.16.0.?, $\ldots$
1638.g1 1638.g \( 2 \cdot 3^{2} \cdot 7 \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, 741, 21797]$ \(y^2+xy=x^3-x^2+741x+21797\) 2184.2.0.?
1638.h1 1638.h \( 2 \cdot 3^{2} \cdot 7 \cdot 13 \) $1$ $\mathsf{trivial}$ $1.602623211$ $[1, -1, 0, -33070464, 73207840986]$ \(y^2+xy=x^3-x^2-33070464x+73207840986\) 7.24.0.a.2, 21.48.0-7.a.2.2, 728.48.0.?, 2184.96.2.?
1638.h2 1638.h \( 2 \cdot 3^{2} \cdot 7 \cdot 13 \) $1$ $\mathsf{trivial}$ $0.228946173$ $[1, -1, 0, 6426, 2238516]$ \(y^2+xy=x^3-x^2+6426x+2238516\) 7.24.0.a.1, 21.48.0-7.a.1.2, 728.48.0.?, 2184.96.2.?
1638.i1 1638.i \( 2 \cdot 3^{2} \cdot 7 \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -33738, -2381068]$ \(y^2+xy=x^3-x^2-33738x-2381068\) 2184.2.0.?
1638.j1 1638.j \( 2 \cdot 3^{2} \cdot 7 \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, 30, 98]$ \(y^2+xy=x^3-x^2+30x+98\) 728.2.0.?
1638.k1 1638.k \( 2 \cdot 3^{2} \cdot 7 \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 1, -41477, -3246595]$ \(y^2+xy+y=x^3-x^2-41477x-3246595\) 728.2.0.?
1638.l1 1638.l \( 2 \cdot 3^{2} \cdot 7 \cdot 13 \) $1$ $\Z/3\Z$ $0.485500763$ $[1, -1, 1, -234509, 43769909]$ \(y^2+xy+y=x^3-x^2-234509x+43769909\) 3.8.0-3.a.1.2, 9.24.0-9.a.1.2, 819.72.0.?, 2184.16.0.?, 6552.144.3.?
1638.l2 1638.l \( 2 \cdot 3^{2} \cdot 7 \cdot 13 \) $1$ $\Z/3\Z$ $0.161833587$ $[1, -1, 1, -1094, 133589]$ \(y^2+xy+y=x^3-x^2-1094x+133589\) 3.24.0-3.a.1.1, 819.72.0.?, 2184.48.1.?, 6552.144.3.?
1638.l3 1638.l \( 2 \cdot 3^{2} \cdot 7 \cdot 13 \) $1$ $\mathsf{trivial}$ $0.485500763$ $[1, -1, 1, 121, -4921]$ \(y^2+xy+y=x^3-x^2+121x-4921\) 3.8.0-3.a.1.1, 9.24.0-9.a.1.1, 819.72.0.?, 2184.16.0.?, 6552.144.3.?
1638.m1 1638.m \( 2 \cdot 3^{2} \cdot 7 \cdot 13 \) $1$ $\mathsf{trivial}$ $0.025647841$ $[1, -1, 1, -3749, 89437]$ \(y^2+xy+y=x^3-x^2-3749x+89437\) 2184.2.0.?
1638.n1 1638.n \( 2 \cdot 3^{2} \cdot 7 \cdot 13 \) $1$ $\mathsf{trivial}$ $0.127128028$ $[1, -1, 1, 82, -835]$ \(y^2+xy+y=x^3-x^2+82x-835\) 2184.2.0.?
1638.o1 1638.o \( 2 \cdot 3^{2} \cdot 7 \cdot 13 \) $1$ $\mathsf{trivial}$ $0.081690690$ $[1, -1, 1, -68, 263]$ \(y^2+xy+y=x^3-x^2-68x+263\) 2184.2.0.?
1638.p1 1638.p \( 2 \cdot 3^{2} \cdot 7 \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, -8615, -305585]$ \(y^2+xy+y=x^3-x^2-8615x-305585\) 2.3.0.a.1, 3.8.0-3.a.1.1, 6.24.0-6.a.1.2, 12.48.0-12.j.1.6, 364.6.0.?, $\ldots$
1638.p2 1638.p \( 2 \cdot 3^{2} \cdot 7 \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, -8075, -345977]$ \(y^2+xy+y=x^3-x^2-8075x-345977\) 2.3.0.a.1, 3.8.0-3.a.1.1, 6.48.0-6.b.1.1, 364.6.0.?, 1092.96.1.?
1638.p3 1638.p \( 2 \cdot 3^{2} \cdot 7 \cdot 13 \) $0$ $\Z/6\Z$ $1$ $[1, -1, 1, -215, 623]$ \(y^2+xy+y=x^3-x^2-215x+623\) 2.3.0.a.1, 3.8.0-3.a.1.2, 6.24.0-6.a.1.4, 12.48.0-12.j.1.8, 364.6.0.?, $\ldots$
1638.p4 1638.p \( 2 \cdot 3^{2} \cdot 7 \cdot 13 \) $0$ $\Z/6\Z$ $1$ $[1, -1, 1, 745, 4079]$ \(y^2+xy+y=x^3-x^2+745x+4079\) 2.3.0.a.1, 3.8.0-3.a.1.2, 6.48.0-6.b.1.2, 364.6.0.?, 1092.96.1.?
1638.q1 1638.q \( 2 \cdot 3^{2} \cdot 7 \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 1, -200, -23669]$ \(y^2+xy+y=x^3-x^2-200x-23669\) 728.2.0.?
1638.r1 1638.r \( 2 \cdot 3^{2} \cdot 7 \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 1, -977, 12147]$ \(y^2+xy+y=x^3-x^2-977x+12147\) 2184.2.0.?
1638.s1 1638.s \( 2 \cdot 3^{2} \cdot 7 \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, -17609, -894787]$ \(y^2+xy+y=x^3-x^2-17609x-894787\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.5, 12.12.0-4.c.1.2, 24.24.0-24.z.1.4, $\ldots$
1638.s2 1638.s \( 2 \cdot 3^{2} \cdot 7 \cdot 13 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, -1, 1, -1229, -10267]$ \(y^2+xy+y=x^3-x^2-1229x-10267\) 2.6.0.a.1, 4.12.0-2.a.1.1, 12.24.0-12.b.1.2, 364.24.0.?, 1092.48.0.?
1638.s3 1638.s \( 2 \cdot 3^{2} \cdot 7 \cdot 13 \) $0$ $\Z/4\Z$ $1$ $[1, -1, 1, -509, 4421]$ \(y^2+xy+y=x^3-x^2-509x+4421\) 2.3.0.a.1, 4.12.0-4.c.1.1, 24.24.0-24.z.1.8, 546.6.0.?, 728.24.0.?, $\ldots$
1638.s4 1638.s \( 2 \cdot 3^{2} \cdot 7 \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, 3631, -74419]$ \(y^2+xy+y=x^3-x^2+3631x-74419\) 2.3.0.a.1, 4.12.0-4.c.1.2, 6.6.0.a.1, 12.24.0-12.g.1.1, 728.24.0.?, $\ldots$
1638.t1 1638.t \( 2 \cdot 3^{2} \cdot 7 \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 1, -191, -1511]$ \(y^2+xy+y=x^3-x^2-191x-1511\) 3.8.0-3.a.1.1, 2184.16.0.?
1638.t2 1638.t \( 2 \cdot 3^{2} \cdot 7 \cdot 13 \) $0$ $\Z/3\Z$ $1$ $[1, -1, 1, 19, 29]$ \(y^2+xy+y=x^3-x^2+19x+29\) 3.8.0-3.a.1.2, 2184.16.0.?
  displayed columns for results