Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
1638.a1 |
1638f1 |
1638.a |
1638f |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 13 \) |
\( - 2^{17} \cdot 3^{13} \cdot 7 \cdot 13^{5} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2184$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$38080$ |
$2.238586$ |
$-112205650221491190337/745029571313664$ |
$1.03121$ |
$7.12989$ |
$[1, -1, 0, -904356, 333142096]$ |
\(y^2+xy=x^3-x^2-904356x+333142096\) |
2184.2.0.? |
$[]$ |
1638.b1 |
1638d1 |
1638.b |
1638d |
$2$ |
$3$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 13 \) |
\( - 2 \cdot 3^{3} \cdot 7 \cdot 13^{3} \) |
$1$ |
$\Z/3\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.8.0.1 |
3B.1.1 |
$2184$ |
$16$ |
$0$ |
$1.084139296$ |
$1$ |
|
$6$ |
$288$ |
$-0.165664$ |
$-38958219/30758$ |
$0.86191$ |
$2.92307$ |
$[1, -1, 0, -21, 63]$ |
\(y^2+xy=x^3-x^2-21x+63\) |
3.8.0-3.a.1.2, 2184.16.0.? |
$[(3, 3)]$ |
1638.b2 |
1638d2 |
1638.b |
1638d |
$2$ |
$3$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 13 \) |
\( - 2^{3} \cdot 3^{9} \cdot 7^{3} \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.8.0.2 |
3B.1.2 |
$2184$ |
$16$ |
$0$ |
$0.361379765$ |
$1$ |
|
$6$ |
$864$ |
$0.383642$ |
$29503629/35672$ |
$0.86975$ |
$3.67142$ |
$[1, -1, 0, 174, -964]$ |
\(y^2+xy=x^3-x^2+174x-964\) |
3.8.0-3.a.1.1, 2184.16.0.? |
$[(19, 85)]$ |
1638.c1 |
1638e3 |
1638.c |
1638e |
$4$ |
$4$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 13 \) |
\( 2^{5} \cdot 3^{6} \cdot 7^{3} \cdot 13^{8} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.9 |
2B |
$168$ |
$48$ |
$0$ |
$1$ |
$4$ |
$2$ |
$0$ |
$23040$ |
$1.999313$ |
$22868021811807457713/8953460393696$ |
$1.08758$ |
$6.91344$ |
$[1, -1, 0, -532203, -149255515]$ |
\(y^2+xy=x^3-x^2-532203x-149255515\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0.p.1, 24.24.0-8.p.1.5, 56.24.0.bp.1, $\ldots$ |
$[]$ |
1638.c2 |
1638e4 |
1638.c |
1638e |
$4$ |
$4$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 13 \) |
\( 2^{5} \cdot 3^{6} \cdot 7^{12} \cdot 13^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.15 |
2B |
$168$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$23040$ |
$1.999313$ |
$3389174547561866673/74853681183008$ |
$1.05145$ |
$6.65549$ |
$[1, -1, 0, -281643, 56492261]$ |
\(y^2+xy=x^3-x^2-281643x+56492261\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0.k.1, 12.12.0-4.c.1.1, 24.24.0-8.k.1.1, $\ldots$ |
$[]$ |
1638.c3 |
1638e2 |
1638.c |
1638e |
$4$ |
$4$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 13 \) |
\( 2^{10} \cdot 3^{6} \cdot 7^{6} \cdot 13^{4} \) |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.3 |
2Cs |
$168$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$2$ |
$11520$ |
$1.652739$ |
$8511781274893233/3440817243136$ |
$1.08472$ |
$5.84658$ |
$[1, -1, 0, -38283, -1573435]$ |
\(y^2+xy=x^3-x^2-38283x-1573435\) |
2.6.0.a.1, 8.12.0.a.1, 12.12.0-2.a.1.1, 24.24.0-8.a.1.2, 28.12.0.b.1, $\ldots$ |
$[]$ |
1638.c4 |
1638e1 |
1638.c |
1638e |
$4$ |
$4$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 13 \) |
\( - 2^{20} \cdot 3^{6} \cdot 7^{3} \cdot 13^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.9 |
2B |
$168$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$5760$ |
$1.306166$ |
$71903073502287/60782804992$ |
$1.03131$ |
$5.20157$ |
$[1, -1, 0, 7797, -181819]$ |
\(y^2+xy=x^3-x^2+7797x-181819\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0.p.1, 12.12.0-4.c.1.2, 14.6.0.b.1, $\ldots$ |
$[]$ |
1638.d1 |
1638i3 |
1638.d |
1638i |
$4$ |
$4$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 13 \) |
\( 2 \cdot 3^{7} \cdot 7^{4} \cdot 13 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$2184$ |
$48$ |
$0$ |
$1.657050101$ |
$1$ |
|
$6$ |
$1536$ |
$0.673279$ |
$8020417344913/187278$ |
$0.95653$ |
$4.90522$ |
$[1, -1, 0, -3753, -87561]$ |
\(y^2+xy=x^3-x^2-3753x-87561\) |
2.3.0.a.1, 4.6.0.c.1, 24.12.0-4.c.1.2, 52.12.0-4.c.1.1, 56.12.0.bb.1, $\ldots$ |
$[(-35, 18)]$ |
1638.d2 |
1638i2 |
1638.d |
1638i |
$4$ |
$4$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 13 \) |
\( 2^{2} \cdot 3^{8} \cdot 7^{2} \cdot 13^{2} \) |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.6.0.1 |
2Cs |
$2184$ |
$48$ |
$0$ |
$0.828525050$ |
$1$ |
|
$14$ |
$768$ |
$0.326705$ |
$2181825073/298116$ |
$0.95664$ |
$3.79600$ |
$[1, -1, 0, -243, -1215]$ |
\(y^2+xy=x^3-x^2-243x-1215\) |
2.6.0.a.1, 24.12.0-2.a.1.1, 52.12.0-2.a.1.1, 56.12.0.a.1, 84.12.0.?, $\ldots$ |
$[(-9, 18)]$ |
1638.d3 |
1638i1 |
1638.d |
1638i |
$4$ |
$4$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 13 \) |
\( 2^{4} \cdot 3^{7} \cdot 7 \cdot 13 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$2184$ |
$48$ |
$0$ |
$0.414262525$ |
$1$ |
|
$9$ |
$384$ |
$-0.019868$ |
$38272753/4368$ |
$0.84174$ |
$3.24972$ |
$[1, -1, 0, -63, 189]$ |
\(y^2+xy=x^3-x^2-63x+189\) |
2.3.0.a.1, 4.6.0.c.1, 24.12.0-4.c.1.6, 52.12.0-4.c.1.2, 56.12.0.bb.1, $\ldots$ |
$[(3, 3)]$ |
1638.d4 |
1638i4 |
1638.d |
1638i |
$4$ |
$4$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 13 \) |
\( - 2 \cdot 3^{10} \cdot 7 \cdot 13^{4} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$2184$ |
$48$ |
$0$ |
$1.657050101$ |
$1$ |
|
$4$ |
$1536$ |
$0.673279$ |
$8780064047/32388174$ |
$1.00545$ |
$4.21133$ |
$[1, -1, 0, 387, -6885]$ |
\(y^2+xy=x^3-x^2+387x-6885\) |
2.3.0.a.1, 4.6.0.c.1, 24.12.0-4.c.1.1, 56.12.0.v.1, 84.12.0.?, $\ldots$ |
$[(33, 186)]$ |
1638.e1 |
1638c3 |
1638.e |
1638c |
$4$ |
$6$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 13 \) |
\( 2^{12} \cdot 3^{9} \cdot 7^{3} \cdot 13 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
2.3.0.1, 3.8.0.2 |
2B, 3B.1.2 |
$1092$ |
$96$ |
$1$ |
$0.978488052$ |
$1$ |
|
$7$ |
$1728$ |
$0.912594$ |
$40530337875/18264064$ |
$0.95791$ |
$4.63610$ |
$[1, -1, 0, -1932, -14896]$ |
\(y^2+xy=x^3-x^2-1932x-14896\) |
2.3.0.a.1, 3.8.0-3.a.1.1, 6.24.0-6.a.1.2, 12.48.0-12.j.1.6, 364.6.0.?, $\ldots$ |
$[(56, 196)]$ |
1638.e2 |
1638c1 |
1638.e |
1638c |
$4$ |
$6$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 13 \) |
\( 2^{4} \cdot 3^{3} \cdot 7 \cdot 13^{3} \) |
$1$ |
$\Z/6\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
2.3.0.1, 3.8.0.1 |
2B, 3B.1.1 |
$1092$ |
$96$ |
$1$ |
$2.935464157$ |
$1$ |
|
$9$ |
$576$ |
$0.363287$ |
$3592121380875/246064$ |
$0.96478$ |
$4.35138$ |
$[1, -1, 0, -957, 11637]$ |
\(y^2+xy=x^3-x^2-957x+11637\) |
2.3.0.a.1, 3.8.0-3.a.1.2, 6.24.0-6.a.1.4, 12.48.0-12.j.1.8, 364.6.0.?, $\ldots$ |
$[(-9, 144)]$ |
1638.e3 |
1638c2 |
1638.e |
1638c |
$4$ |
$6$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 13 \) |
\( - 2^{2} \cdot 3^{3} \cdot 7^{2} \cdot 13^{6} \) |
$1$ |
$\Z/6\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
2.3.0.1, 3.8.0.1 |
2B, 3B.1.1 |
$1092$ |
$96$ |
$1$ |
$1.467732078$ |
$1$ |
|
$12$ |
$1152$ |
$0.709861$ |
$-2958077788875/946054564$ |
$0.97191$ |
$4.38459$ |
$[1, -1, 0, -897, 13113]$ |
\(y^2+xy=x^3-x^2-897x+13113\) |
2.3.0.a.1, 3.8.0-3.a.1.2, 6.48.0-6.b.1.2, 364.6.0.?, 1092.96.1.? |
$[(12, 57)]$ |
1638.e4 |
1638c4 |
1638.e |
1638c |
$4$ |
$6$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 13 \) |
\( - 2^{6} \cdot 3^{9} \cdot 7^{6} \cdot 13^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
2.3.0.1, 3.8.0.2 |
2B, 3B.1.2 |
$1092$ |
$96$ |
$1$ |
$0.489244026$ |
$1$ |
|
$8$ |
$3456$ |
$1.259167$ |
$1695802078125/1272491584$ |
$1.05976$ |
$5.14059$ |
$[1, -1, 0, 6708, -116848]$ |
\(y^2+xy=x^3-x^2+6708x-116848\) |
2.3.0.a.1, 3.8.0-3.a.1.1, 6.48.0-6.b.1.1, 364.6.0.?, 1092.96.1.? |
$[(64, 724)]$ |
1638.f1 |
1638j3 |
1638.f |
1638j |
$3$ |
$9$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 13 \) |
\( - 2 \cdot 3^{6} \cdot 7 \cdot 13 \) |
$0$ |
$\Z/3\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.24.0.1 |
3B.1.1 |
$6552$ |
$144$ |
$3$ |
$1$ |
$9$ |
$3$ |
$2$ |
$3240$ |
$1.229763$ |
$-424962187484640625/182$ |
$1.05379$ |
$6.37495$ |
$[1, -1, 0, -140967, 20406843]$ |
\(y^2+xy=x^3-x^2-140967x+20406843\) |
3.8.0-3.a.1.2, 9.24.0-9.a.1.2, 728.2.0.?, 819.72.0.?, 2184.16.0.?, $\ldots$ |
$[]$ |
1638.f2 |
1638j2 |
1638.f |
1638j |
$3$ |
$9$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 13 \) |
\( - 2^{3} \cdot 3^{6} \cdot 7^{3} \cdot 13^{3} \) |
$0$ |
$\Z/3\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.24.0.1 |
3Cs.1.1 |
$6552$ |
$144$ |
$3$ |
$1$ |
$1$ |
|
$2$ |
$1080$ |
$0.680457$ |
$-795309684625/6028568$ |
$0.94067$ |
$4.59473$ |
$[1, -1, 0, -1737, 28485]$ |
\(y^2+xy=x^3-x^2-1737x+28485\) |
3.24.0-3.a.1.1, 728.2.0.?, 819.72.0.?, 2184.48.1.?, 6552.144.3.? |
$[]$ |
1638.f3 |
1638j1 |
1638.f |
1638j |
$3$ |
$9$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 13 \) |
\( - 2^{9} \cdot 3^{6} \cdot 7 \cdot 13 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.24.0.3 |
3B.1.2 |
$6552$ |
$144$ |
$3$ |
$1$ |
$1$ |
|
$0$ |
$360$ |
$0.131151$ |
$37595375/46592$ |
$0.87083$ |
$3.26519$ |
$[1, -1, 0, 63, 189]$ |
\(y^2+xy=x^3-x^2+63x+189\) |
3.8.0-3.a.1.1, 9.24.0-9.a.1.1, 728.2.0.?, 819.72.0.?, 2184.16.0.?, $\ldots$ |
$[]$ |
1638.g1 |
1638a1 |
1638.g |
1638a |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 13 \) |
\( - 2^{17} \cdot 3^{9} \cdot 7 \cdot 13 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2184$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1632$ |
$0.863975$ |
$2284322013/11927552$ |
$0.95325$ |
$4.52886$ |
$[1, -1, 0, 741, 21797]$ |
\(y^2+xy=x^3-x^2+741x+21797\) |
2184.2.0.? |
$[]$ |
1638.h1 |
1638h2 |
1638.h |
1638h |
$2$ |
$7$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 13 \) |
\( - 2 \cdot 3^{7} \cdot 7 \cdot 13^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$7$ |
7.24.0.2 |
7B.6.3 |
$2184$ |
$96$ |
$2$ |
$1.602623211$ |
$1$ |
|
$2$ |
$65856$ |
$2.595856$ |
$-5486773802537974663600129/2635437714$ |
$1.05935$ |
$8.58723$ |
$[1, -1, 0, -33070464, 73207840986]$ |
\(y^2+xy=x^3-x^2-33070464x+73207840986\) |
7.24.0.a.2, 21.48.0-7.a.2.2, 728.48.0.?, 2184.96.2.? |
$[(3321, -1602)]$ |
1638.h2 |
1638h1 |
1638.h |
1638h |
$2$ |
$7$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 13 \) |
\( - 2^{7} \cdot 3^{13} \cdot 7^{7} \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$7$ |
7.24.0.1 |
7B.6.1 |
$2184$ |
$96$ |
$2$ |
$0.228946173$ |
$1$ |
|
$6$ |
$9408$ |
$1.622898$ |
$40251338884511/2997011332224$ |
$1.03878$ |
$5.77839$ |
$[1, -1, 0, 6426, 2238516]$ |
\(y^2+xy=x^3-x^2+6426x+2238516\) |
7.24.0.a.1, 21.48.0-7.a.1.2, 728.48.0.?, 2184.96.2.? |
$[(315, 5796)]$ |
1638.i1 |
1638b1 |
1638.i |
1638b |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 13 \) |
\( - 2^{11} \cdot 3^{9} \cdot 7^{5} \cdot 13 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2184$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$5280$ |
$1.369747$ |
$-215773279370739/447469568$ |
$1.11419$ |
$5.79584$ |
$[1, -1, 0, -33738, -2381068]$ |
\(y^2+xy=x^3-x^2-33738x-2381068\) |
2184.2.0.? |
$[]$ |
1638.j1 |
1638g1 |
1638.j |
1638g |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 13 \) |
\( - 2 \cdot 3^{6} \cdot 7^{3} \cdot 13 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$728$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$504$ |
$-0.008551$ |
$4019679/8918$ |
$1.11550$ |
$3.08597$ |
$[1, -1, 0, 30, 98]$ |
\(y^2+xy=x^3-x^2+30x+98\) |
728.2.0.? |
$[]$ |
1638.k1 |
1638r1 |
1638.k |
1638r |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 13 \) |
\( - 2^{11} \cdot 3^{6} \cdot 7^{7} \cdot 13 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$728$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$9240$ |
$1.420473$ |
$-10824513276632329/21926008832$ |
$0.99602$ |
$5.87953$ |
$[1, -1, 1, -41477, -3246595]$ |
\(y^2+xy+y=x^3-x^2-41477x-3246595\) |
728.2.0.? |
$[]$ |
1638.l1 |
1638t3 |
1638.l |
1638t |
$3$ |
$9$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 13 \) |
\( - 2^{27} \cdot 3^{7} \cdot 7 \cdot 13 \) |
$1$ |
$\Z/3\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.24.0.1 |
3B.1.1 |
$6552$ |
$144$ |
$3$ |
$0.485500763$ |
$1$ |
|
$12$ |
$15552$ |
$1.700766$ |
$-1956469094246217097/36641439744$ |
$1.01732$ |
$6.58125$ |
$[1, -1, 1, -234509, 43769909]$ |
\(y^2+xy+y=x^3-x^2-234509x+43769909\) |
3.8.0-3.a.1.2, 9.24.0-9.a.1.2, 819.72.0.?, 2184.16.0.?, 6552.144.3.? |
$[(207, 1912)]$ |
1638.l2 |
1638t2 |
1638.l |
1638t |
$3$ |
$9$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 13 \) |
\( - 2^{9} \cdot 3^{9} \cdot 7^{3} \cdot 13^{3} \) |
$1$ |
$\Z/3\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.24.0.1 |
3Cs.1.1 |
$6552$ |
$144$ |
$3$ |
$0.161833587$ |
$1$ |
|
$22$ |
$5184$ |
$1.151459$ |
$-198461344537/10417365504$ |
$1.00967$ |
$5.01594$ |
$[1, -1, 1, -1094, 133589]$ |
\(y^2+xy+y=x^3-x^2-1094x+133589\) |
3.24.0-3.a.1.1, 819.72.0.?, 2184.48.1.?, 6552.144.3.? |
$[(27, 337)]$ |
1638.l3 |
1638t1 |
1638.l |
1638t |
$3$ |
$9$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 13 \) |
\( - 2^{3} \cdot 3^{15} \cdot 7 \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.24.0.3 |
3B.1.2 |
$6552$ |
$144$ |
$3$ |
$0.485500763$ |
$1$ |
|
$4$ |
$1728$ |
$0.602153$ |
$270840023/14329224$ |
$0.96753$ |
$4.12272$ |
$[1, -1, 1, 121, -4921]$ |
\(y^2+xy+y=x^3-x^2+121x-4921\) |
3.8.0-3.a.1.1, 9.24.0-9.a.1.1, 819.72.0.?, 2184.16.0.?, 6552.144.3.? |
$[(81, 688)]$ |
1638.m1 |
1638l1 |
1638.m |
1638l |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 13 \) |
\( - 2^{11} \cdot 3^{3} \cdot 7^{5} \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2184$ |
$2$ |
$0$ |
$0.025647841$ |
$1$ |
|
$18$ |
$1760$ |
$0.820441$ |
$-215773279370739/447469568$ |
$1.11419$ |
$4.90522$ |
$[1, -1, 1, -3749, 89437]$ |
\(y^2+xy+y=x^3-x^2-3749x+89437\) |
2184.2.0.? |
$[(49, 122)]$ |
1638.n1 |
1638k1 |
1638.n |
1638k |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 13 \) |
\( - 2^{17} \cdot 3^{3} \cdot 7 \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2184$ |
$2$ |
$0$ |
$0.127128028$ |
$1$ |
|
$10$ |
$544$ |
$0.314668$ |
$2284322013/11927552$ |
$0.95325$ |
$3.63824$ |
$[1, -1, 1, 82, -835]$ |
\(y^2+xy+y=x^3-x^2+82x-835\) |
2184.2.0.? |
$[(9, 19)]$ |
1638.o1 |
1638o1 |
1638.o |
1638o |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 13 \) |
\( - 2^{5} \cdot 3^{7} \cdot 7 \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2184$ |
$2$ |
$0$ |
$0.081690690$ |
$1$ |
|
$10$ |
$320$ |
$0.030051$ |
$-47045881/8736$ |
$0.98493$ |
$3.31521$ |
$[1, -1, 1, -68, 263]$ |
\(y^2+xy+y=x^3-x^2-68x+263\) |
2184.2.0.? |
$[(9, 13)]$ |
1638.p1 |
1638m3 |
1638.p |
1638m |
$4$ |
$6$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 13 \) |
\( 2^{4} \cdot 3^{9} \cdot 7 \cdot 13^{3} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
2.3.0.1, 3.8.0.2 |
2B, 3B.1.2 |
$1092$ |
$96$ |
$1$ |
$1$ |
$1$ |
|
$1$ |
$1728$ |
$0.912594$ |
$3592121380875/246064$ |
$0.96478$ |
$5.24200$ |
$[1, -1, 1, -8615, -305585]$ |
\(y^2+xy+y=x^3-x^2-8615x-305585\) |
2.3.0.a.1, 3.8.0-3.a.1.1, 6.24.0-6.a.1.2, 12.48.0-12.j.1.6, 364.6.0.?, $\ldots$ |
$[]$ |
1638.p2 |
1638m4 |
1638.p |
1638m |
$4$ |
$6$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 13 \) |
\( - 2^{2} \cdot 3^{9} \cdot 7^{2} \cdot 13^{6} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
2.3.0.1, 3.8.0.2 |
2B, 3B.1.2 |
$1092$ |
$96$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$3456$ |
$1.259167$ |
$-2958077788875/946054564$ |
$0.97191$ |
$5.27521$ |
$[1, -1, 1, -8075, -345977]$ |
\(y^2+xy+y=x^3-x^2-8075x-345977\) |
2.3.0.a.1, 3.8.0-3.a.1.1, 6.48.0-6.b.1.1, 364.6.0.?, 1092.96.1.? |
$[]$ |
1638.p3 |
1638m1 |
1638.p |
1638m |
$4$ |
$6$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 13 \) |
\( 2^{12} \cdot 3^{3} \cdot 7^{3} \cdot 13 \) |
$0$ |
$\Z/6\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
2.3.0.1, 3.8.0.1 |
2B, 3B.1.1 |
$1092$ |
$96$ |
$1$ |
$1$ |
$1$ |
|
$5$ |
$576$ |
$0.363287$ |
$40530337875/18264064$ |
$0.95791$ |
$3.74548$ |
$[1, -1, 1, -215, 623]$ |
\(y^2+xy+y=x^3-x^2-215x+623\) |
2.3.0.a.1, 3.8.0-3.a.1.2, 6.24.0-6.a.1.4, 12.48.0-12.j.1.8, 364.6.0.?, $\ldots$ |
$[]$ |
1638.p4 |
1638m2 |
1638.p |
1638m |
$4$ |
$6$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 13 \) |
\( - 2^{6} \cdot 3^{3} \cdot 7^{6} \cdot 13^{2} \) |
$0$ |
$\Z/6\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
2.3.0.1, 3.8.0.1 |
2B, 3B.1.1 |
$1092$ |
$96$ |
$1$ |
$1$ |
$1$ |
|
$4$ |
$1152$ |
$0.709861$ |
$1695802078125/1272491584$ |
$1.05976$ |
$4.24997$ |
$[1, -1, 1, 745, 4079]$ |
\(y^2+xy+y=x^3-x^2+745x+4079\) |
2.3.0.a.1, 3.8.0-3.a.1.2, 6.48.0-6.b.1.2, 364.6.0.?, 1092.96.1.? |
$[]$ |
1638.q1 |
1638s1 |
1638.q |
1638s |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 13 \) |
\( - 2^{7} \cdot 3^{6} \cdot 7 \cdot 13^{5} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$728$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1960$ |
$0.863742$ |
$-1207949625/332678528$ |
$1.06089$ |
$4.54940$ |
$[1, -1, 1, -200, -23669]$ |
\(y^2+xy+y=x^3-x^2-200x-23669\) |
728.2.0.? |
$[]$ |
1638.r1 |
1638p1 |
1638.r |
1638p |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 13 \) |
\( - 2 \cdot 3^{11} \cdot 7^{3} \cdot 13 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2184$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$960$ |
$0.567485$ |
$-141339344329/2167074$ |
$0.92745$ |
$4.36309$ |
$[1, -1, 1, -977, 12147]$ |
\(y^2+xy+y=x^3-x^2-977x+12147\) |
2184.2.0.? |
$[]$ |
1638.s1 |
1638q3 |
1638.s |
1638q |
$4$ |
$4$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 13 \) |
\( 2^{2} \cdot 3^{18} \cdot 7 \cdot 13 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.6 |
2B |
$2184$ |
$48$ |
$0$ |
$1$ |
$4$ |
$2$ |
$0$ |
$3072$ |
$1.129950$ |
$828279937799497/193444524$ |
$0.98347$ |
$5.53179$ |
$[1, -1, 1, -17609, -894787]$ |
\(y^2+xy+y=x^3-x^2-17609x-894787\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.5, 12.12.0-4.c.1.2, 24.24.0-24.z.1.4, $\ldots$ |
$[]$ |
1638.s2 |
1638q2 |
1638.s |
1638q |
$4$ |
$4$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 13 \) |
\( 2^{4} \cdot 3^{12} \cdot 7^{2} \cdot 13^{2} \) |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.1 |
2Cs |
$1092$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$2$ |
$1536$ |
$0.783376$ |
$281397674377/96589584$ |
$0.94755$ |
$4.45260$ |
$[1, -1, 1, -1229, -10267]$ |
\(y^2+xy+y=x^3-x^2-1229x-10267\) |
2.6.0.a.1, 4.12.0-2.a.1.1, 12.24.0-12.b.1.2, 364.24.0.?, 1092.48.0.? |
$[]$ |
1638.s3 |
1638q1 |
1638.s |
1638q |
$4$ |
$4$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 13 \) |
\( 2^{8} \cdot 3^{9} \cdot 7 \cdot 13 \) |
$0$ |
$\Z/4\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.7 |
2B |
$2184$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$3$ |
$768$ |
$0.436802$ |
$19968681097/628992$ |
$0.91084$ |
$4.09514$ |
$[1, -1, 1, -509, 4421]$ |
\(y^2+xy+y=x^3-x^2-509x+4421\) |
2.3.0.a.1, 4.12.0-4.c.1.1, 24.24.0-24.z.1.8, 546.6.0.?, 728.24.0.?, $\ldots$ |
$[]$ |
1638.s4 |
1638q4 |
1638.s |
1638q |
$4$ |
$4$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 13 \) |
\( - 2^{2} \cdot 3^{9} \cdot 7^{4} \cdot 13^{4} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.8 |
2B |
$2184$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$3072$ |
$1.129950$ |
$7264187703863/7406095788$ |
$0.97845$ |
$4.89184$ |
$[1, -1, 1, 3631, -74419]$ |
\(y^2+xy+y=x^3-x^2+3631x-74419\) |
2.3.0.a.1, 4.12.0-4.c.1.2, 6.6.0.a.1, 12.24.0-12.g.1.1, 728.24.0.?, $\ldots$ |
$[]$ |
1638.t1 |
1638n2 |
1638.t |
1638n |
$2$ |
$3$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 13 \) |
\( - 2 \cdot 3^{9} \cdot 7 \cdot 13^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.8.0.2 |
3B.1.2 |
$2184$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$864$ |
$0.383642$ |
$-38958219/30758$ |
$0.86191$ |
$3.81369$ |
$[1, -1, 1, -191, -1511]$ |
\(y^2+xy+y=x^3-x^2-191x-1511\) |
3.8.0-3.a.1.1, 2184.16.0.? |
$[]$ |
1638.t2 |
1638n1 |
1638.t |
1638n |
$2$ |
$3$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 13 \) |
\( - 2^{3} \cdot 3^{3} \cdot 7^{3} \cdot 13 \) |
$0$ |
$\Z/3\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.8.0.1 |
3B.1.1 |
$2184$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$2$ |
$288$ |
$-0.165664$ |
$29503629/35672$ |
$0.86975$ |
$2.78080$ |
$[1, -1, 1, 19, 29]$ |
\(y^2+xy+y=x^3-x^2+19x+29\) |
3.8.0-3.a.1.2, 2184.16.0.? |
$[]$ |