Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2+xy=x^3-x^2+6426x+2238516\)
|
(homogenize, simplify) |
|
\(y^2z+xyz=x^3-x^2z+6426xz^2+2238516z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3+102813x+143367838\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(315, 5796)$ | $0.22894617307898607580336556240$ | $\infty$ |
Integral points
\( \left(-35, 1421\right) \), \( \left(-35, -1386\right) \), \( \left(21, 1533\right) \), \( \left(21, -1554\right) \), \( \left(315, 5796\right) \), \( \left(315, -6111\right) \)
Invariants
| Conductor: | $N$ | = | \( 1638 \) | = | $2 \cdot 3^{2} \cdot 7 \cdot 13$ |
|
| Discriminant: | $\Delta$ | = | $-2184821261191296$ | = | $-1 \cdot 2^{7} \cdot 3^{13} \cdot 7^{7} \cdot 13 $ |
|
| j-invariant: | $j$ | = | \( \frac{40251338884511}{2997011332224} \) | = | $2^{-7} \cdot 3^{-7} \cdot 7^{-7} \cdot 13^{-1} \cdot 43^{3} \cdot 797^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.6228987438331146182699401104$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $1.0735925994990597725723174919$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $1.0387829692161805$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $5.778393648502147$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
| Mordell-Weil rank: | $r$ | = | $ 1$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $0.22894617307898607580336556240$ |
|
| Real period: | $\Omega$ | ≈ | $0.35341951867816574469466537926$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 28 $ = $ 1\cdot2^{2}\cdot7\cdot1 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |
|
| Special value: | $ L'(E,1)$ | ≈ | $2.2655932961979320304067553599 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 2.265593296 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.353420 \cdot 0.228946 \cdot 28}{1^2} \\ & \approx 2.265593296\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
| Modular degree: | 9408 |
|
| $ \Gamma_0(N) $-optimal: | yes | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $1$ | $I_{7}$ | nonsplit multiplicative | 1 | 1 | 7 | 7 |
| $3$ | $4$ | $I_{7}^{*}$ | additive | -1 | 2 | 13 | 7 |
| $7$ | $7$ | $I_{7}$ | split multiplicative | -1 | 1 | 7 | 7 |
| $13$ | $1$ | $I_{1}$ | nonsplit multiplicative | 1 | 1 | 1 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $7$ | 7B.6.1 | 7.24.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 2184 = 2^{3} \cdot 3 \cdot 7 \cdot 13 \), index $96$, genus $2$, and generators
$\left(\begin{array}{rr} 2171 & 14 \\ 2170 & 15 \end{array}\right),\left(\begin{array}{rr} 1 & 14 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 727 & 2170 \\ 721 & 2085 \end{array}\right),\left(\begin{array}{rr} 1093 & 14 \\ 1099 & 99 \end{array}\right),\left(\begin{array}{rr} 547 & 1106 \\ 1645 & 801 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 14 & 1 \end{array}\right),\left(\begin{array}{rr} 8 & 5 \\ 91 & 57 \end{array}\right),\left(\begin{array}{rr} 1639 & 14 \\ 553 & 99 \end{array}\right),\left(\begin{array}{rr} 2017 & 14 \\ 1015 & 99 \end{array}\right)$.
The torsion field $K:=\Q(E[2184])$ is a degree-$40577531904$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/2184\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | nonsplit multiplicative | $4$ | \( 819 = 3^{2} \cdot 7 \cdot 13 \) |
| $3$ | additive | $8$ | \( 182 = 2 \cdot 7 \cdot 13 \) |
| $7$ | split multiplicative | $8$ | \( 117 = 3^{2} \cdot 13 \) |
| $13$ | nonsplit multiplicative | $14$ | \( 126 = 2 \cdot 3^{2} \cdot 7 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
7.
Its isogeny class 1638h
consists of 2 curves linked by isogenies of
degree 7.
Twists
The minimal quadratic twist of this elliptic curve is 546f1, its twist by $-3$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{-3}) \) | \(\Z/7\Z\) | 2.0.3.1-99372.5-j2 |
| $3$ | 3.1.2184.1 | \(\Z/2\Z\) | not in database |
| $6$ | 6.0.10417365504.1 | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
| $6$ | 6.0.14309568.3 | \(\Z/14\Z\) | not in database |
| $8$ | 8.2.194365577860272.4 | \(\Z/3\Z\) | not in database |
| $12$ | deg 12 | \(\Z/4\Z\) | not in database |
| $12$ | deg 12 | \(\Z/2\Z \oplus \Z/14\Z\) | not in database |
| $16$ | deg 16 | \(\Z/21\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | nonsplit | add | ord | split | ord | nonsplit | ord | ord | ord | ord | ord | ord | ss | ord | ord |
| $\lambda$-invariant(s) | 3 | - | 3 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1,1 | 1 | 1 |
| $\mu$-invariant(s) | 0 | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0,0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
Note: $p$-adic regulator data only exists for primes $p\ge 5$ of good ordinary reduction.