Properties

Label 163370.e
Number of curves $1$
Conductor $163370$
CM no
Rank $2$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("e1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 163370.e1 has rank \(2\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(5\)\(1 - T\)
\(17\)\(1 - T\)
\(31\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + T + 3 T^{2}\) 1.3.b
\(7\) \( 1 + 2 T + 7 T^{2}\) 1.7.c
\(11\) \( 1 - 2 T + 11 T^{2}\) 1.11.ac
\(13\) \( 1 - T + 13 T^{2}\) 1.13.ab
\(19\) \( 1 - 2 T + 19 T^{2}\) 1.19.ac
\(23\) \( 1 + 5 T + 23 T^{2}\) 1.23.f
\(29\) \( 1 - 3 T + 29 T^{2}\) 1.29.ad
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 163370.e do not have complex multiplication.

Modular form 163370.2.a.e

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} - q^{3} + q^{4} + q^{5} + q^{6} - 2 q^{7} - q^{8} - 2 q^{9} - q^{10} + 2 q^{11} - q^{12} + q^{13} + 2 q^{14} - q^{15} + q^{16} + q^{17} + 2 q^{18} + 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 163370.e

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
163370.e1 163370n1 \([1, 1, 0, -5057, 135001]\) \(480232637191/5312500\) \(158264687500\) \([]\) \(186368\) \(0.96338\) \(\Gamma_0(N)\)-optimal