Properties

Label 162624.bb
Number of curves $4$
Conductor $162624$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bb1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 162624.bb have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 + T\)
\(7\)\(1 - T\)
\(11\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 2 T + 5 T^{2}\) 1.5.c
\(13\) \( 1 + 2 T + 13 T^{2}\) 1.13.c
\(17\) \( 1 + 6 T + 17 T^{2}\) 1.17.g
\(19\) \( 1 + 4 T + 19 T^{2}\) 1.19.e
\(23\) \( 1 + 4 T + 23 T^{2}\) 1.23.e
\(29\) \( 1 - 6 T + 29 T^{2}\) 1.29.ag
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 162624.bb do not have complex multiplication.

Modular form 162624.2.a.bb

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} - 2 q^{5} + q^{7} + q^{9} - 2 q^{13} + 2 q^{15} - 6 q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 162624.bb

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
162624.bb1 162624hc4 \([0, -1, 0, -73729, -7671167]\) \(381775972/567\) \(65829279301632\) \([2]\) \(737280\) \(1.5525\)  
162624.bb2 162624hc2 \([0, -1, 0, -5969, -41391]\) \(810448/441\) \(12800137641984\) \([2, 2]\) \(368640\) \(1.2059\)  
162624.bb3 162624hc1 \([0, -1, 0, -3549, 82029]\) \(2725888/21\) \(38095647744\) \([2]\) \(184320\) \(0.85933\) \(\Gamma_0(N)\)-optimal
162624.bb4 162624hc3 \([0, -1, 0, 23071, -349215]\) \(11696828/7203\) \(-836275659276288\) \([2]\) \(737280\) \(1.5525\)