Properties

Label 162450.cs
Number of curves $1$
Conductor $162450$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("cs1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 162450.cs1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 - T\)
\(3\)\(1\)
\(5\)\(1\)
\(19\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + 4 T + 7 T^{2}\) 1.7.e
\(11\) \( 1 - T + 11 T^{2}\) 1.11.ab
\(13\) \( 1 + 13 T^{2}\) 1.13.a
\(17\) \( 1 - 8 T + 17 T^{2}\) 1.17.ai
\(23\) \( 1 - 3 T + 23 T^{2}\) 1.23.ad
\(29\) \( 1 + T + 29 T^{2}\) 1.29.b
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 162450.cs do not have complex multiplication.

Modular form 162450.2.a.cs

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} + q^{4} - 4 q^{7} + q^{8} + q^{11} - 4 q^{14} + q^{16} + 8 q^{17} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 162450.cs

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
162450.cs1 162450a1 \([1, -1, 1, -1666805, 863369997]\) \(-23891790625/1181952\) \(-25335471511781280000\) \([]\) \(5529600\) \(2.4846\) \(\Gamma_0(N)\)-optimal