Properties

Label 162240.gi
Number of curves $4$
Conductor $162240$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("gi1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 162240.gi have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 - T\)
\(5\)\(1 - T\)
\(13\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + 4 T + 7 T^{2}\) 1.7.e
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(17\) \( 1 - 2 T + 17 T^{2}\) 1.17.ac
\(19\) \( 1 - 8 T + 19 T^{2}\) 1.19.ai
\(23\) \( 1 - 4 T + 23 T^{2}\) 1.23.ae
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 162240.gi do not have complex multiplication.

Modular form 162240.2.a.gi

Copy content sage:E.q_eigenform(10)
 
\(q + q^{3} + q^{5} - 4 q^{7} + q^{9} + q^{15} + 2 q^{17} + 8 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 162240.gi

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
162240.gi1 162240b4 \([0, 1, 0, -153803745, -733997610657]\) \(2543984126301795848/909361981125\) \(143829126176832884736000\) \([2]\) \(33030144\) \(3.4128\)  
162240.gi2 162240b3 \([0, 1, 0, -79443745, 266913001343]\) \(350584567631475848/8259273550125\) \(1306326987741767307264000\) \([2]\) \(33030144\) \(3.4128\)  
162240.gi3 162240b2 \([0, 1, 0, -10998745, -7948429657]\) \(7442744143086784/2927948765625\) \(57887332161362496000000\) \([2, 2]\) \(16515072\) \(3.0663\)  
162240.gi4 162240b1 \([0, 1, 0, 2204380, -895320282]\) \(3834800837445824/3342041015625\) \(-1032409193765625000000\) \([2]\) \(8257536\) \(2.7197\) \(\Gamma_0(N)\)-optimal