Properties

Label 162240.e
Number of curves $4$
Conductor $162240$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("e1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 162240.e have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 + T\)
\(5\)\(1 + T\)
\(13\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + 4 T + 7 T^{2}\) 1.7.e
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(17\) \( 1 + 2 T + 17 T^{2}\) 1.17.c
\(19\) \( 1 - 4 T + 19 T^{2}\) 1.19.ae
\(23\) \( 1 - 8 T + 23 T^{2}\) 1.23.ai
\(29\) \( 1 + 2 T + 29 T^{2}\) 1.29.c
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 162240.e do not have complex multiplication.

Modular form 162240.2.a.e

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} - q^{5} - 4 q^{7} + q^{9} + q^{15} - 2 q^{17} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 162240.e

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
162240.e1 162240hq3 \([0, -1, 0, -935892481, 11020450420225]\) \(71647584155243142409/10140000\) \(12830334847549440000\) \([2]\) \(41287680\) \(3.5195\)  
162240.e2 162240hq4 \([0, -1, 0, -67151361, 117900961281]\) \(26465989780414729/10571870144160\) \(13376788354475697226383360\) \([2]\) \(41287680\) \(3.5195\)  
162240.e3 162240hq2 \([0, -1, 0, -58498561, 172176514561]\) \(17496824387403529/6580454400\) \(8326374102665684582400\) \([2, 2]\) \(20643840\) \(3.1729\)  
162240.e4 162240hq1 \([0, -1, 0, -3120641, 3506445825]\) \(-2656166199049/2658140160\) \(-3363395298276000399360\) \([2]\) \(10321920\) \(2.8263\) \(\Gamma_0(N)\)-optimal