Show commands:
SageMath
E = EllipticCurve("c1")
E.isogeny_class()
Elliptic curves in class 162.c
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
162.c1 | 162b4 | \([1, -1, 1, -9695, -364985]\) | \(-189613868625/128\) | \(-68024448\) | \([]\) | \(126\) | \(0.81867\) | |
162.c2 | 162b3 | \([1, -1, 1, -95, -697]\) | \(-1159088625/2097152\) | \(-169869312\) | \([3]\) | \(42\) | \(0.26937\) | |
162.c3 | 162b1 | \([1, -1, 1, -5, 5]\) | \(-140625/8\) | \(-648\) | \([3]\) | \(6\) | \(-0.70359\) | \(\Gamma_0(N)\)-optimal |
162.c4 | 162b2 | \([1, -1, 1, 25, 1]\) | \(3375/2\) | \(-1062882\) | \([]\) | \(18\) | \(-0.15428\) |
Rank
sage: E.rank()
The elliptic curves in class 162.c have rank \(0\).
Complex multiplication
The elliptic curves in class 162.c do not have complex multiplication.Modular form 162.2.a.c
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrrr} 1 & 3 & 21 & 7 \\ 3 & 1 & 7 & 21 \\ 21 & 7 & 1 & 3 \\ 7 & 21 & 3 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.