Learn more

Refine search


Results (12 matches)

  displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images
162.a1 162.a \( 2 \cdot 3^{4} \) $1$ $\Z/3\Z$ $0.305934883$ $[1, -1, 0, -6, 8]$ \(y^2+xy=x^3-x^2-6x+8\) 3.8.0-3.a.1.2, 4.8.0.b.1, 12.128.1-12.b.2.3
162.a2 162.a \( 2 \cdot 3^{4} \) $1$ $\mathsf{trivial}$ $0.101978294$ $[1, -1, 0, 39, -19]$ \(y^2+xy=x^3-x^2+39x-19\) 3.8.0-3.a.1.1, 4.8.0.b.1, 12.128.1-12.b.1.3
162.b1 162.b \( 2 \cdot 3^{4} \) $0$ $\Z/3\Z$ $1$ $[1, -1, 0, -1077, 13877]$ \(y^2+xy=x^3-x^2-1077x+13877\) 3.8.0-3.a.1.2, 7.8.0.a.1, 8.2.0.a.1, 21.128.1-21.a.4.2, 24.16.0-24.a.1.8, $\ldots$
162.b2 162.b \( 2 \cdot 3^{4} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -852, 19664]$ \(y^2+xy=x^3-x^2-852x+19664\) 3.8.0-3.a.1.1, 7.8.0.a.1, 8.2.0.a.1, 21.128.1-21.a.1.3, 24.16.0-24.a.1.6, $\ldots$
162.b3 162.b \( 2 \cdot 3^{4} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -42, -100]$ \(y^2+xy=x^3-x^2-42x-100\) 3.8.0-3.a.1.1, 7.8.0.a.1, 8.2.0.a.1, 21.128.1-21.a.3.2, 24.16.0-24.a.1.6, $\ldots$
162.b4 162.b \( 2 \cdot 3^{4} \) $0$ $\Z/3\Z$ $1$ $[1, -1, 0, 3, -1]$ \(y^2+xy=x^3-x^2+3x-1\) 3.8.0-3.a.1.2, 7.8.0.a.1, 8.2.0.a.1, 21.128.1-21.a.2.2, 24.16.0-24.a.1.8, $\ldots$
162.c1 162.c \( 2 \cdot 3^{4} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 1, -9695, -364985]$ \(y^2+xy+y=x^3-x^2-9695x-364985\) 3.8.0-3.a.1.1, 7.16.0-7.a.1.1, 8.2.0.a.1, 21.128.1-21.a.4.3, 24.16.0-24.a.1.6, $\ldots$
162.c2 162.c \( 2 \cdot 3^{4} \) $0$ $\Z/3\Z$ $1$ $[1, -1, 1, -95, -697]$ \(y^2+xy+y=x^3-x^2-95x-697\) 3.8.0-3.a.1.2, 7.16.0-7.a.1.1, 8.2.0.a.1, 21.128.1-21.a.1.2, 24.16.0-24.a.1.8, $\ldots$
162.c3 162.c \( 2 \cdot 3^{4} \) $0$ $\Z/3\Z$ $1$ $[1, -1, 1, -5, 5]$ \(y^2+xy+y=x^3-x^2-5x+5\) 3.8.0-3.a.1.2, 7.16.0-7.a.1.2, 8.2.0.a.1, 21.128.1-21.a.3.3, 24.16.0-24.a.1.8, $\ldots$
162.c4 162.c \( 2 \cdot 3^{4} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 1, 25, 1]$ \(y^2+xy+y=x^3-x^2+25x+1\) 3.8.0-3.a.1.1, 7.16.0-7.a.1.2, 8.2.0.a.1, 21.128.1-21.a.2.3, 24.16.0-24.a.1.6, $\ldots$
162.d1 162.d \( 2 \cdot 3^{4} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 1, -56, -161]$ \(y^2+xy+y=x^3-x^2-56x-161\) 3.8.0-3.a.1.1, 4.16.0-4.b.1.1, 12.128.1-12.b.2.4
162.d2 162.d \( 2 \cdot 3^{4} \) $0$ $\Z/3\Z$ $1$ $[1, -1, 1, 4, -1]$ \(y^2+xy+y=x^3-x^2+4x-1\) 3.8.0-3.a.1.2, 4.16.0-4.b.1.1, 12.128.1-12.b.1.4
  displayed columns for results