Properties

Label 161700.ch
Number of curves $2$
Conductor $161700$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("ch1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 161700.ch have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 + T\)
\(5\)\(1\)
\(7\)\(1\)
\(11\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(13\) \( 1 - 4 T + 13 T^{2}\) 1.13.ae
\(17\) \( 1 + 17 T^{2}\) 1.17.a
\(19\) \( 1 - 8 T + 19 T^{2}\) 1.19.ai
\(23\) \( 1 + 4 T + 23 T^{2}\) 1.23.e
\(29\) \( 1 - 2 T + 29 T^{2}\) 1.29.ac
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 161700.ch do not have complex multiplication.

Modular form 161700.2.a.ch

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} + q^{9} + q^{11} + 4 q^{13} + 8 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 161700.ch

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
161700.ch1 161700cq1 \([0, -1, 0, -49653, 3526902]\) \(57537462272/10673289\) \(2511403555122000\) \([2]\) \(884736\) \(1.6732\) \(\Gamma_0(N)\)-optimal
161700.ch2 161700cq2 \([0, -1, 0, 98572, 20424552]\) \(28134667888/64304361\) \(-242091000553248000\) \([2]\) \(1769472\) \(2.0197\)