Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
| 
    \(y^2=x^3+x^2+367x+2863\)
    
    
    
         | 
        (homogenize, simplify) | 
| 
    \(y^2z=x^3+x^2z+367xz^2+2863z^3\)
    
    
    
         | 
        (dehomogenize, simplify) | 
| 
    \(y^2=x^3+29700x+1998000\)
    
    
    
         | 
        (homogenize, minimize) | 
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order | 
|---|---|---|
| $(13, 100)$ | $1.1238605487133595969103039247$ | $\infty$ | 
| $(-7, 0)$ | $0$ | $2$ | 
Integral points
      
    \( \left(-7, 0\right) \), \((13,\pm 100)\), \((18,\pm 125)\), \((1993,\pm 89000)\)
    
    
    
        
    
    
        
    
      
Invariants
| Conductor: | $N$ | = | \( 1600 \) | = | $2^{6} \cdot 5^{2}$ | 
     | 
        
| Discriminant: | $\Delta$ | = | $-6400000000$ | = | $-1 \cdot 2^{14} \cdot 5^{8} $ | 
     | 
        
| j-invariant: | $j$ | = | \( \frac{21296}{25} \) | = | $2^{4} \cdot 5^{-2} \cdot 11^{3}$ | 
     | 
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) | 
     | 
        ||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $0.56791604126147552554358570750$ | 
     | 
        ||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-1.0454746256088441894102314341$ | 
     | 
        ||
| $abc$ quality: | $Q$ | ≈ | $0.8396384887826309$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $3.9788657931386813$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ | 
     | 
        
| Mordell-Weil rank: | $r$ | = | $ 1$ | 
     | 
        
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $1.1238605487133595969103039247$ | 
     | 
| Real period: | $\Omega$ | ≈ | $0.89314584153522006012226629303$ | 
     | 
        
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 8 $ = $ 2\cdot2^{2} $ | 
     | 
        
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ | 
     | 
        
| Special value: | $ L'(E,1)$ | ≈ | $2.0075427510976554711385638196 $ | 
     | 
        
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) | 
     | 
        
BSD formula
$$\begin{aligned} 2.007542751 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.893146 \cdot 1.123861 \cdot 8}{2^2} \\ & \approx 2.007542751\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
| Modular degree: | 768 | 
     | 
        
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 | 
     | 
        
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 2 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ | 
|---|---|---|---|---|---|---|---|
| $2$ | $2$ | $I_{4}^{*}$ | additive | 1 | 6 | 14 | 0 | 
| $5$ | $4$ | $I_{2}^{*}$ | additive | 1 | 2 | 8 | 2 | 
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image | 
|---|---|---|
| $2$ | 2B | 4.12.0.6 | 
| $3$ | 3B | 3.4.0.1 | 
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 120 = 2^{3} \cdot 3 \cdot 5 \), index $384$, genus $9$, and generators
$\left(\begin{array}{rr} 97 & 24 \\ 96 & 25 \end{array}\right),\left(\begin{array}{rr} 3 & 110 \\ 76 & 19 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 24 & 1 \end{array}\right),\left(\begin{array}{rr} 13 & 24 \\ 12 & 13 \end{array}\right),\left(\begin{array}{rr} 15 & 16 \\ 74 & 95 \end{array}\right),\left(\begin{array}{rr} 59 & 96 \\ 114 & 95 \end{array}\right),\left(\begin{array}{rr} 111 & 4 \\ 23 & 53 \end{array}\right),\left(\begin{array}{rr} 1 & 24 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 99 & 16 \\ 46 & 3 \end{array}\right)$.
The torsion field $K:=\Q(E[120])$ is a degree-$92160$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/120\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor | 
|---|---|---|---|
| $2$ | additive | $2$ | \( 25 = 5^{2} \) | 
| $5$ | additive | $18$ | \( 64 = 2^{6} \) | 
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2, 3 and 6.
Its isogeny class 1600g
consists of 4 curves linked by isogenies of
degrees dividing 6.
Twists
The minimal quadratic twist of this elliptic curve is 20a1, its twist by $40$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve | 
|---|---|---|---|
| $2$ | \(\Q(\sqrt{-1}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database | 
| $2$ | \(\Q(\sqrt{10}) \) | \(\Z/6\Z\) | 2.2.40.1-20.1-b2 | 
| $4$ | 4.2.1600.1 | \(\Z/4\Z\) | not in database | 
| $4$ | \(\Q(i, \sqrt{10})\) | \(\Z/2\Z \oplus \Z/6\Z\) | not in database | 
| $6$ | 6.0.172800000.1 | \(\Z/6\Z\) | not in database | 
| $8$ | 8.0.40960000.2 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database | 
| $8$ | 8.4.40960000.1 | \(\Z/12\Z\) | not in database | 
| $12$ | deg 12 | \(\Z/3\Z \oplus \Z/6\Z\) | not in database | 
| $12$ | deg 12 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database | 
| $16$ | 16.4.268435456000000000000.4 | \(\Z/8\Z\) | not in database | 
| $16$ | 16.0.26843545600000000.2 | \(\Z/4\Z \oplus \Z/12\Z\) | not in database | 
| $18$ | 18.6.4062398266736640000000000000.1 | \(\Z/18\Z\) | not in database | 
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | add | ord | add | ord | ss | ord | ord | ord | ord | ord | ord | ord | ord | ord | ord | 
| $\lambda$-invariant(s) | - | 3 | - | 3 | 1,1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 
| $\mu$-invariant(s) | - | 0 | - | 0 | 0,0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.