Learn more

Refine search


Results (1-50 of 159 matches)

Next   displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images MW-generators
20.a4 20.a \( 2^{2} \cdot 5 \) $0$ $\Z/6\Z$ $1$ $[0, 1, 0, 4, 4]$ \(y^2=x^3+x^2+4x+4\) 2.3.0.a.1, 3.8.0-3.a.1.2, 4.6.0.a.1, 6.24.0-6.a.1.4, 8.12.0-4.a.1.1, $\ldots$ $[ ]$
80.b4 80.b \( 2^{4} \cdot 5 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, 4, -4]$ \(y^2=x^3-x^2+4x-4\) 2.3.0.a.1, 3.4.0.a.1, 4.6.0.a.1, 6.24.0-6.a.1.1, 8.12.0-4.a.1.1, $\ldots$ $[ ]$
100.a4 100.a \( 2^{2} \cdot 5^{2} \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, 92, 312]$ \(y^2=x^3-x^2+92x+312\) 2.3.0.a.1, 3.4.0.a.1, 4.6.0.a.1, 6.12.0.a.1, 8.12.0-4.a.1.2, $\ldots$ $[ ]$
180.a4 180.a \( 2^{2} \cdot 3^{2} \cdot 5 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, 33, -74]$ \(y^2=x^3+33x-74\) 2.3.0.a.1, 3.8.0-3.a.1.1, 4.6.0.a.1, 6.24.0-6.a.1.2, 12.48.0-12.d.1.5, $\ldots$ $[ ]$
320.a4 320.a \( 2^{6} \cdot 5 \) $1$ $\Z/2\Z$ $0.413436914$ $[0, 1, 0, 15, -17]$ \(y^2=x^3+x^2+15x-17\) 2.3.0.a.1, 3.4.0.a.1, 4.12.0-4.a.1.1, 6.12.0.a.1, 12.48.0-12.d.1.1, $\ldots$ $[(3, 8)]$
320.f4 320.f \( 2^{6} \cdot 5 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, 15, 17]$ \(y^2=x^3-x^2+15x+17\) 2.3.0.a.1, 3.4.0.a.1, 4.12.0-4.a.1.1, 6.12.0.a.1, 12.48.0-12.d.1.1, $\ldots$ $[ ]$
400.c4 400.c \( 2^{4} \cdot 5^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, 92, -312]$ \(y^2=x^3+x^2+92x-312\) 2.3.0.a.1, 3.4.0.a.1, 4.6.0.a.1, 6.12.0.a.1, 8.12.0-4.a.1.2, $\ldots$ $[ ]$
720.h4 720.h \( 2^{4} \cdot 3^{2} \cdot 5 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, 33, 74]$ \(y^2=x^3+33x+74\) 2.3.0.a.1, 3.4.0.a.1, 4.6.0.a.1, 6.24.0-6.a.1.3, 12.48.0-12.d.1.9, $\ldots$ $[ ]$
900.b4 900.b \( 2^{2} \cdot 3^{2} \cdot 5^{2} \) $1$ $\Z/2\Z$ $0.652442533$ $[0, 0, 0, 825, -9250]$ \(y^2=x^3+825x-9250\) 2.3.0.a.1, 3.4.0.a.1, 4.6.0.a.1, 6.12.0.a.1, 12.48.0-12.d.1.10, $\ldots$ $[(35, 250)]$
980.h4 980.h \( 2^{2} \cdot 5 \cdot 7^{2} \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, 180, -1000]$ \(y^2=x^3-x^2+180x-1000\) 2.3.0.a.1, 3.4.0.a.1, 4.6.0.a.1, 6.12.0.a.1, 12.24.0.d.1, $\ldots$ $[ ]$
1600.c4 1600.c \( 2^{6} \cdot 5^{2} \) $1$ $\Z/2\Z$ $1.123860548$ $[0, 1, 0, 367, 2863]$ \(y^2=x^3+x^2+367x+2863\) 2.3.0.a.1, 3.4.0.a.1, 4.12.0-4.a.1.2, 6.12.0.a.1, 12.48.0-12.d.1.2, $\ldots$ $[(13, 100)]$
1600.w4 1600.w \( 2^{6} \cdot 5^{2} \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, 367, -2863]$ \(y^2=x^3-x^2+367x-2863\) 2.3.0.a.1, 3.4.0.a.1, 4.12.0-4.a.1.2, 6.12.0.a.1, 12.48.0-12.d.1.2, $\ldots$ $[ ]$
2420.a4 2420.a \( 2^{2} \cdot 5 \cdot 11^{2} \) $1$ $\Z/2\Z$ $2.913037286$ $[0, 1, 0, 444, -3500]$ \(y^2=x^3+x^2+444x-3500\) 2.3.0.a.1, 3.4.0.a.1, 4.6.0.a.1, 6.12.0.a.1, 12.24.0.d.1, $\ldots$ $[(27, 170)]$
2880.f4 2880.f \( 2^{6} \cdot 3^{2} \cdot 5 \) $1$ $\Z/2\Z$ $0.652453316$ $[0, 0, 0, 132, 592]$ \(y^2=x^3+132x+592\) 2.3.0.a.1, 3.4.0.a.1, 4.6.0.a.1, 6.12.0.a.1, 12.48.0-12.d.1.7, $\ldots$ $[(6, 40)]$
2880.m4 2880.m \( 2^{6} \cdot 3^{2} \cdot 5 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, 132, -592]$ \(y^2=x^3+132x-592\) 2.3.0.a.1, 3.4.0.a.1, 4.6.0.a.1, 6.12.0.a.1, 12.48.0-12.d.1.7, $\ldots$ $[ ]$
3380.c4 3380.c \( 2^{2} \cdot 5 \cdot 13^{2} \) $1$ $\Z/2\Z$ $1.550022328$ $[0, 1, 0, 620, 6228]$ \(y^2=x^3+x^2+620x+6228\) 2.3.0.a.1, 3.4.0.a.1, 4.6.0.a.1, 6.12.0.a.1, 12.24.0.d.1, $\ldots$ $[(43, 338)]$
3600.be4 3600.be \( 2^{4} \cdot 3^{2} \cdot 5^{2} \) $1$ $\Z/2\Z$ $2.523052391$ $[0, 0, 0, 825, 9250]$ \(y^2=x^3+825x+9250\) 2.3.0.a.1, 3.4.0.a.1, 4.6.0.a.1, 6.12.0.a.1, 12.48.0-12.d.1.6, $\ldots$ $[(170, 2250)]$
3920.h4 3920.h \( 2^{4} \cdot 5 \cdot 7^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, 180, 1000]$ \(y^2=x^3+x^2+180x+1000\) 2.3.0.a.1, 3.4.0.a.1, 4.6.0.a.1, 6.12.0.a.1, 12.24.0.d.1, $\ldots$ $[ ]$
4900.e4 4900.e \( 2^{2} \cdot 5^{2} \cdot 7^{2} \) $1$ $\Z/2\Z$ $3.388750362$ $[0, 1, 0, 4492, -116012]$ \(y^2=x^3+x^2+4492x-116012\) 2.3.0.a.1, 3.4.0.a.1, 4.6.0.a.1, 6.12.0.a.1, 12.24.0.d.1, $\ldots$ $[(1003, 31850)]$
5780.f4 5780.f \( 2^{2} \cdot 5 \cdot 17^{2} \) $1$ $\Z/2\Z$ $1.327560949$ $[0, -1, 0, 1060, 13112]$ \(y^2=x^3-x^2+1060x+13112\) 2.3.0.a.1, 3.4.0.a.1, 4.6.0.a.1, 6.12.0.a.1, 12.24.0.d.1, $\ldots$ $[(142, 1734)]$
7220.f4 7220.f \( 2^{2} \cdot 5 \cdot 19^{2} \) $1$ $\Z/2\Z$ $10.78096542$ $[0, -1, 0, 1324, -19240]$ \(y^2=x^3-x^2+1324x-19240\) 2.3.0.a.1, 3.4.0.a.1, 4.6.0.a.1, 6.12.0.a.1, 12.24.0.d.1, $\ldots$ $[(90313/29, 28335510/29)]$
8820.g4 8820.g \( 2^{2} \cdot 3^{2} \cdot 5 \cdot 7^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, 1617, 25382]$ \(y^2=x^3+1617x+25382\) 2.3.0.a.1, 3.4.0.a.1, 4.6.0.a.1, 6.12.0.a.1, 12.24.0.d.1, $\ldots$ $[ ]$
9680.ba4 9680.ba \( 2^{4} \cdot 5 \cdot 11^{2} \) $1$ $\Z/2\Z$ $7.204315546$ $[0, -1, 0, 444, 3500]$ \(y^2=x^3-x^2+444x+3500\) 2.3.0.a.1, 3.4.0.a.1, 4.6.0.a.1, 6.12.0.a.1, 12.24.0.d.1, $\ldots$ $[(-667/11, 38910/11)]$
10580.c4 10580.c \( 2^{2} \cdot 5 \cdot 23^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, 1940, -32700]$ \(y^2=x^3+x^2+1940x-32700\) 2.3.0.a.1, 3.4.0.a.1, 4.6.0.a.1, 6.12.0.a.1, 12.24.0.d.1, $\ldots$ $[ ]$
12100.j4 12100.j \( 2^{2} \cdot 5^{2} \cdot 11^{2} \) $1$ $\Z/2\Z$ $3.764376792$ $[0, -1, 0, 11092, -459688]$ \(y^2=x^3-x^2+11092x-459688\) 2.3.0.a.1, 3.4.0.a.1, 4.6.0.a.1, 6.12.0.a.1, 12.24.0.d.1, $\ldots$ $[(1162, 39750)]$
13520.bc4 13520.bc \( 2^{4} \cdot 5 \cdot 13^{2} \) $1$ $\Z/2\Z$ $5.851833251$ $[0, -1, 0, 620, -6228]$ \(y^2=x^3-x^2+620x-6228\) 2.3.0.a.1, 3.4.0.a.1, 4.6.0.a.1, 6.12.0.a.1, 12.24.0.d.1, $\ldots$ $[(3277/9, 210574/9)]$
14400.bl4 14400.bl \( 2^{6} \cdot 3^{2} \cdot 5^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, 3300, -74000]$ \(y^2=x^3+3300x-74000\) 2.3.0.a.1, 3.4.0.a.1, 4.6.0.a.1, 6.12.0.a.1, 12.48.0-12.d.1.8, $\ldots$ $[ ]$
14400.dz4 14400.dz \( 2^{6} \cdot 3^{2} \cdot 5^{2} \) $1$ $\Z/2\Z$ $1.239398326$ $[0, 0, 0, 3300, 74000]$ \(y^2=x^3+3300x+74000\) 2.3.0.a.1, 3.4.0.a.1, 4.6.0.a.1, 6.12.0.a.1, 12.48.0-12.d.1.8, $\ldots$ $[(-10, 200)]$
15680.n4 15680.n \( 2^{6} \cdot 5 \cdot 7^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, 719, -7281]$ \(y^2=x^3+x^2+719x-7281\) 2.3.0.a.1, 3.4.0.a.1, 4.6.0.a.1, 6.12.0.a.1, 12.24.0.d.1, $\ldots$ $[ ]$
15680.de4 15680.de \( 2^{6} \cdot 5 \cdot 7^{2} \) $1$ $\Z/2\Z$ $2.227924885$ $[0, -1, 0, 719, 7281]$ \(y^2=x^3-x^2+719x+7281\) 2.3.0.a.1, 3.4.0.a.1, 4.6.0.a.1, 6.12.0.a.1, 12.24.0.d.1, $\ldots$ $[(9, 120)]$
16820.c4 16820.c \( 2^{2} \cdot 5 \cdot 29^{2} \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, 3084, 65816]$ \(y^2=x^3-x^2+3084x+65816\) 2.3.0.a.1, 3.4.0.a.1, 4.6.0.a.1, 6.12.0.a.1, 12.24.0.d.1, $\ldots$ $[ ]$
16900.p4 16900.p \( 2^{2} \cdot 5^{2} \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, 15492, 747512]$ \(y^2=x^3-x^2+15492x+747512\) 2.3.0.a.1, 3.4.0.a.1, 4.6.0.a.1, 6.12.0.a.1, 12.24.0.d.1, $\ldots$ $[ ]$
19220.c4 19220.c \( 2^{2} \cdot 5 \cdot 31^{2} \) $1$ $\Z/2\Z$ $5.842598685$ $[0, -1, 0, 3524, -82824]$ \(y^2=x^3-x^2+3524x-82824\) 2.3.0.a.1, 3.4.0.a.1, 4.6.0.a.1, 6.12.0.a.1, 12.24.0.d.1, $\ldots$ $[(741, 20220)]$
19600.dm4 19600.dm \( 2^{4} \cdot 5^{2} \cdot 7^{2} \) $1$ $\Z/2\Z$ $7.565103573$ $[0, -1, 0, 4492, 116012]$ \(y^2=x^3-x^2+4492x+116012\) 2.3.0.a.1, 3.4.0.a.1, 4.6.0.a.1, 6.12.0.a.1, 12.24.0.d.1, $\ldots$ $[(20197/6, 2889125/6)]$
21780.q4 21780.q \( 2^{2} \cdot 3^{2} \cdot 5 \cdot 11^{2} \) $1$ $\Z/2\Z$ $1.659099599$ $[0, 0, 0, 3993, 98494]$ \(y^2=x^3+3993x+98494\) 2.3.0.a.1, 3.4.0.a.1, 4.6.0.a.1, 6.12.0.a.1, 12.24.0.d.1, $\ldots$ $[(23, 450)]$
23120.i4 23120.i \( 2^{4} \cdot 5 \cdot 17^{2} \) $1$ $\Z/2\Z$ $4.019703220$ $[0, 1, 0, 1060, -13112]$ \(y^2=x^3+x^2+1060x-13112\) 2.3.0.a.1, 3.4.0.a.1, 4.6.0.a.1, 6.12.0.a.1, 12.24.0.d.1, $\ldots$ $[(877/2, 26299/2)]$
27380.c4 27380.c \( 2^{2} \cdot 5 \cdot 37^{2} \) $1$ $\Z/2\Z$ $4.725053941$ $[0, 1, 0, 5020, 140500]$ \(y^2=x^3+x^2+5020x+140500\) 2.3.0.a.1, 3.4.0.a.1, 4.6.0.a.1, 6.12.0.a.1, 12.24.0.d.1, $\ldots$ $[(8665/4, 814555/4)]$
28880.b4 28880.b \( 2^{4} \cdot 5 \cdot 19^{2} \) $1$ $\Z/2\Z$ $3.072807633$ $[0, 1, 0, 1324, 19240]$ \(y^2=x^3+x^2+1324x+19240\) 2.3.0.a.1, 3.4.0.a.1, 4.6.0.a.1, 6.12.0.a.1, 12.24.0.d.1, $\ldots$ $[(7, 170)]$
28900.b4 28900.b \( 2^{2} \cdot 5^{2} \cdot 17^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, 26492, 1691988]$ \(y^2=x^3+x^2+26492x+1691988\) 2.3.0.a.1, 3.4.0.a.1, 4.6.0.a.1, 6.12.0.a.1, 12.24.0.d.1, $\ldots$ $[ ]$
30420.c4 30420.c \( 2^{2} \cdot 3^{2} \cdot 5 \cdot 13^{2} \) $1$ $\Z/2\Z$ $1.083965782$ $[0, 0, 0, 5577, -162578]$ \(y^2=x^3+5577x-162578\) 2.3.0.a.1, 3.4.0.a.1, 4.6.0.a.1, 6.12.0.a.1, 12.24.0.d.1, $\ldots$ $[(39, 338)]$
33620.a4 33620.a \( 2^{2} \cdot 5 \cdot 41^{2} \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, 6164, 186840]$ \(y^2=x^3-x^2+6164x+186840\) 2.3.0.a.1, 3.4.0.a.1, 4.6.0.a.1, 6.12.0.a.1, 12.24.0.d.1, $\ldots$ $[ ]$
35280.bk4 35280.bk \( 2^{4} \cdot 3^{2} \cdot 5 \cdot 7^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, 1617, -25382]$ \(y^2=x^3+1617x-25382\) 2.3.0.a.1, 3.4.0.a.1, 4.6.0.a.1, 6.12.0.a.1, 12.24.0.d.1, $\ldots$ $[ ]$
36100.a4 36100.a \( 2^{2} \cdot 5^{2} \cdot 19^{2} \) $1$ $\Z/2\Z$ $2.408211758$ $[0, 1, 0, 33092, -2338812]$ \(y^2=x^3+x^2+33092x-2338812\) 2.3.0.a.1, 3.4.0.a.1, 4.6.0.a.1, 6.12.0.a.1, 12.24.0.d.1, $\ldots$ $[(188, 3250)]$
36980.a4 36980.a \( 2^{2} \cdot 5 \cdot 43^{2} \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, 6780, -220168]$ \(y^2=x^3-x^2+6780x-220168\) 2.3.0.a.1, 3.4.0.a.1, 4.6.0.a.1, 6.12.0.a.1, 12.24.0.d.1, $\ldots$ $[ ]$
38720.p4 38720.p \( 2^{6} \cdot 5 \cdot 11^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, 1775, 29775]$ \(y^2=x^3+x^2+1775x+29775\) 2.3.0.a.1, 3.4.0.a.1, 4.6.0.a.1, 6.12.0.a.1, 12.24.0.d.1, $\ldots$ $[ ]$
38720.dd4 38720.dd \( 2^{6} \cdot 5 \cdot 11^{2} \) $1$ $\Z/2\Z$ $9.112056423$ $[0, -1, 0, 1775, -29775]$ \(y^2=x^3-x^2+1775x-29775\) 2.3.0.a.1, 3.4.0.a.1, 4.6.0.a.1, 6.12.0.a.1, 12.24.0.d.1, $\ldots$ $[(40515, 8154900)]$
42320.ba4 42320.ba \( 2^{4} \cdot 5 \cdot 23^{2} \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, 1940, 32700]$ \(y^2=x^3-x^2+1940x+32700\) 2.3.0.a.1, 3.4.0.a.1, 4.6.0.a.1, 6.12.0.a.1, 12.24.0.d.1, $\ldots$ $[ ]$
44100.ca4 44100.ca \( 2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, 40425, 3172750]$ \(y^2=x^3+40425x+3172750\) 2.3.0.a.1, 3.4.0.a.1, 4.6.0.a.1, 6.12.0.a.1, 12.24.0.d.1, $\ldots$ $[ ]$
44180.c4 44180.c \( 2^{2} \cdot 5 \cdot 47^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, 8100, -281852]$ \(y^2=x^3+x^2+8100x-281852\) 2.3.0.a.1, 3.4.0.a.1, 4.6.0.a.1, 6.12.0.a.1, 12.24.0.d.1, $\ldots$ $[ ]$
48400.l4 48400.l \( 2^{4} \cdot 5^{2} \cdot 11^{2} \) $1$ $\Z/2\Z$ $3.854292136$ $[0, 1, 0, 11092, 459688]$ \(y^2=x^3+x^2+11092x+459688\) 2.3.0.a.1, 3.4.0.a.1, 4.6.0.a.1, 6.12.0.a.1, 12.24.0.d.1, $\ldots$ $[(463, 10250)]$
Next   displayed columns for results