Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+y=x^3-x^2-647009x-200099543\)
|
(homogenize, simplify) |
\(y^2z+yz^2=x^3-x^2z-647009xz^2-200099543z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-838524096x-9345906553968\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(645362744104339909/216259818350625, 497137070572123628980668952/3180268230205162359375)$ | $37.785833817122170552672595082$ | $\infty$ |
Integral points
None
Invariants
Conductor: | $N$ | = | \( 15979 \) | = | $19 \cdot 29^{2}$ |
|
Discriminant: | $\Delta$ | = | $-11301643099$ | = | $-1 \cdot 19 \cdot 29^{6} $ |
|
j-invariant: | $j$ | = | \( -\frac{50357871050752}{19} \) | = | $-1 \cdot 2^{18} \cdot 19^{-1} \cdot 577^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.7170870719845548171117308998$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.033439156991317803520094883620$ |
|
||
$abc$ quality: | $Q$ | ≈ | $1.104947099482495$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $5.347017997948588$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
Mordell-Weil rank: | $r$ | = | $ 1$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $37.785833817122170552672595082$ |
|
Real period: | $\Omega$ | ≈ | $0.084167014516549929764856340769$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 2 $ = $ 1\cdot2 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |
|
Special value: | $ L'(E,1)$ | ≈ | $6.3606416468113299459163456346 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 6.360641647 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.084167 \cdot 37.785834 \cdot 2}{1^2} \\ & \approx 6.360641647\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
Modular degree: | 72576 |
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 2 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$19$ | $1$ | $I_{1}$ | nonsplit multiplicative | 1 | 1 | 1 | 1 |
$29$ | $2$ | $I_0^{*}$ | additive | 1 | 2 | 6 | 0 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$3$ | 3B | 27.36.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 29754 = 2 \cdot 3^{3} \cdot 19 \cdot 29 \), index $1296$, genus $43$, and generators
$\left(\begin{array}{rr} 31 & 36 \\ 23932 & 22993 \end{array}\right),\left(\begin{array}{rr} 24535 & 9309 \\ 1653 & 26768 \end{array}\right),\left(\begin{array}{rr} 17053 & 1044 \\ 20851 & 26797 \end{array}\right),\left(\begin{array}{rr} 29701 & 54 \\ 29700 & 55 \end{array}\right),\left(\begin{array}{rr} 1 & 54 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 28 & 27 \\ 729 & 703 \end{array}\right),\left(\begin{array}{rr} 21545 & 0 \\ 0 & 29753 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 54 & 1 \end{array}\right)$.
The torsion field $K:=\Q(E[29754])$ is a degree-$122439471436800$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/29754\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$19$ | nonsplit multiplicative | $20$ | \( 841 = 29^{2} \) |
$29$ | additive | $422$ | \( 19 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
3 and 9.
Its isogeny class 15979.e
consists of 3 curves linked by isogenies of
degrees dividing 9.
Twists
The minimal quadratic twist of this elliptic curve is 19.a1, its twist by $29$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{-87}) \) | \(\Z/3\Z\) | not in database |
$3$ | 3.1.76.1 | \(\Z/2\Z\) | not in database |
$6$ | 6.0.109744.2 | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$6$ | 6.2.28605589821.2 | \(\Z/3\Z\) | not in database |
$6$ | 6.0.62560424938527.2 | \(\Z/9\Z\) | not in database |
$6$ | 6.0.3803513328.2 | \(\Z/6\Z\) | not in database |
$12$ | deg 12 | \(\Z/4\Z\) | not in database |
$12$ | deg 12 | \(\Z/3\Z \oplus \Z/3\Z\) | not in database |
$12$ | 12.0.30032049849901942064049.2 | \(\Z/9\Z\) | not in database |
$12$ | deg 12 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$18$ | 18.2.34611456125367893853165884548352495616.1 | \(\Z/6\Z\) | not in database |
$18$ | 18.0.362048055941486018020327772125687235889869058048.1 | \(\Z/18\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | ss | ord | ord | ord | ord | ord | ord | nonsplit | ss | add | ord | ord | ord | ord | ord |
$\lambda$-invariant(s) | 2,5 | 1 | 1 | 1 | 1 | 1 | 3 | 1 | 1,1 | - | 1 | 1 | 1 | 1 | 1 |
$\mu$-invariant(s) | 0,0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0,0 | - | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.