Properties

Label 159120.cl
Number of curves $4$
Conductor $159120$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("cl1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 159120.cl have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(5\)\(1 - T\)
\(13\)\(1 - T\)
\(17\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + 4 T + 7 T^{2}\) 1.7.e
\(11\) \( 1 + 4 T + 11 T^{2}\) 1.11.e
\(19\) \( 1 + 19 T^{2}\) 1.19.a
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 159120.cl do not have complex multiplication.

Modular form 159120.2.a.cl

Copy content sage:E.q_eigenform(10)
 
\(q + q^{5} - 4 q^{7} - 4 q^{11} + q^{13} - q^{17} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 159120.cl

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
159120.cl1 159120b3 \([0, 0, 0, -3759920427, 88734894398746]\) \(1968666709544018637994033129/113621848881699526875\) \(339273022811172680056320000\) \([4]\) \(122683392\) \(4.1540\)  
159120.cl2 159120b4 \([0, 0, 0, -1237220427, -15664684941254]\) \(70141892778055497175333129/5090453819946781723125\) \(15200013659099971076743680000\) \([2]\) \(122683392\) \(4.1540\)  
159120.cl3 159120b2 \([0, 0, 0, -248570427, 1217304728746]\) \(568832774079017834683129/114800389711906640625\) \(342792126873517838400000000\) \([2, 2]\) \(61341696\) \(3.8075\)  
159120.cl4 159120b1 \([0, 0, 0, 32679573, 113623478746]\) \(1292603583867446566871/2615843353271484375\) \(-7810866399375000000000000\) \([2]\) \(30670848\) \(3.4609\) \(\Gamma_0(N)\)-optimal