Properties

Label 158700.b
Number of curves $4$
Conductor $158700$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("b1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 158700.b have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 + T\)
\(5\)\(1\)
\(23\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + 4 T + 7 T^{2}\) 1.7.e
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(13\) \( 1 + 2 T + 13 T^{2}\) 1.13.c
\(17\) \( 1 - 6 T + 17 T^{2}\) 1.17.ag
\(19\) \( 1 + 2 T + 19 T^{2}\) 1.19.c
\(29\) \( 1 - 6 T + 29 T^{2}\) 1.29.ag
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 158700.b do not have complex multiplication.

Modular form 158700.2.a.b

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} - 4 q^{7} + q^{9} - 2 q^{13} + 6 q^{17} - 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 158700.b

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
158700.b1 158700z3 \([0, -1, 0, -160886533, 785520056062]\) \(12444451776495616/912525\) \(33771612402431250000\) \([2]\) \(19160064\) \(3.1979\)  
158700.b2 158700z4 \([0, -1, 0, -160555908, 788908962312]\) \(-772993034343376/6661615005\) \(-3944632397763657780000000\) \([2]\) \(38320128\) \(3.5445\)  
158700.b3 158700z1 \([0, -1, 0, -2186533, 847743562]\) \(31238127616/9703125\) \(359102683863281250000\) \([2]\) \(6386688\) \(2.6486\) \(\Gamma_0(N)\)-optimal
158700.b4 158700z2 \([0, -1, 0, 6079092, 5724462312]\) \(41957807024/48205125\) \(-28544354134924500000000\) \([2]\) \(12773376\) \(2.9952\)