Properties

Label 1584n
Number of curves $4$
Conductor $1584$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("n1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 1584n have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(11\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 - 2 T + 5 T^{2}\) 1.5.ac
\(7\) \( 1 + 4 T + 7 T^{2}\) 1.7.e
\(13\) \( 1 - 6 T + 13 T^{2}\) 1.13.ag
\(17\) \( 1 + 6 T + 17 T^{2}\) 1.17.g
\(19\) \( 1 - 8 T + 19 T^{2}\) 1.19.ai
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 - 6 T + 29 T^{2}\) 1.29.ag
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 1584n do not have complex multiplication.

Modular form 1584.2.a.n

Copy content sage:E.q_eigenform(10)
 
\(q - 2 q^{5} + 4 q^{7} - q^{11} - 6 q^{13} - 2 q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 1584n

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
1584.f4 1584n1 \([0, 0, 0, -291, 34]\) \(912673/528\) \(1576599552\) \([2]\) \(768\) \(0.45435\) \(\Gamma_0(N)\)-optimal
1584.f2 1584n2 \([0, 0, 0, -3171, -68510]\) \(1180932193/4356\) \(13006946304\) \([2, 2]\) \(1536\) \(0.80093\)  
1584.f1 1584n3 \([0, 0, 0, -50691, -4392830]\) \(4824238966273/66\) \(197074944\) \([2]\) \(3072\) \(1.1475\)  
1584.f3 1584n4 \([0, 0, 0, -1731, -131006]\) \(-192100033/2371842\) \(-7082282262528\) \([2]\) \(3072\) \(1.1475\)