Properties

Label 158400.ou
Number of curves $4$
Conductor $158400$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("ou1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 158400.ou have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(5\)\(1\)
\(11\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 - 4 T + 7 T^{2}\) 1.7.ae
\(13\) \( 1 - 6 T + 13 T^{2}\) 1.13.ag
\(17\) \( 1 + 6 T + 17 T^{2}\) 1.17.g
\(19\) \( 1 - 4 T + 19 T^{2}\) 1.19.ae
\(23\) \( 1 + 4 T + 23 T^{2}\) 1.23.e
\(29\) \( 1 + 2 T + 29 T^{2}\) 1.29.c
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 158400.ou do not have complex multiplication.

Modular form 158400.2.a.ou

Copy content sage:E.q_eigenform(10)
 
\(q + 4 q^{7} + q^{11} + 6 q^{13} - 6 q^{17} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 158400.ou

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
158400.ou1 158400fr4 \([0, 0, 0, -6792300, -350622000]\) \(46424454082884/26794860125\) \(20002255903872000000000\) \([2]\) \(14155776\) \(2.9687\)  
158400.ou2 158400fr2 \([0, 0, 0, -4542300, 3712878000]\) \(55537159171536/228765625\) \(42693156000000000000\) \([2, 2]\) \(7077888\) \(2.6221\)  
158400.ou3 158400fr1 \([0, 0, 0, -4537800, 3720627000]\) \(885956203616256/15125\) \(176418000000000\) \([2]\) \(3538944\) \(2.2756\) \(\Gamma_0(N)\)-optimal
158400.ou4 158400fr3 \([0, 0, 0, -2364300, 7280442000]\) \(-1957960715364/29541015625\) \(-22052250000000000000000\) \([2]\) \(14155776\) \(2.9687\)