Properties

Label 158400.bb
Number of curves $4$
Conductor $158400$
CM no
Rank $2$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bb1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 158400.bb have rank \(2\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(5\)\(1\)
\(11\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + 4 T + 7 T^{2}\) 1.7.e
\(13\) \( 1 + 4 T + 13 T^{2}\) 1.13.e
\(17\) \( 1 + 6 T + 17 T^{2}\) 1.17.g
\(19\) \( 1 - 2 T + 19 T^{2}\) 1.19.ac
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 + 29 T^{2}\) 1.29.a
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 158400.bb do not have complex multiplication.

Modular form 158400.2.a.bb

Copy content sage:E.q_eigenform(10)
 
\(q - 4 q^{7} + q^{11} - 4 q^{13} - 6 q^{17} + 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 3 & 6 & 2 \\ 3 & 1 & 2 & 6 \\ 6 & 2 & 1 & 3 \\ 2 & 6 & 3 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 158400.bb

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
158400.bb1 158400cb4 \([0, 0, 0, -1400700, -346606000]\) \(1628514404944/664335375\) \(123980925024000000000\) \([2]\) \(5308416\) \(2.5532\)  
158400.bb2 158400cb2 \([0, 0, 0, -644700, 199226000]\) \(158792223184/16335\) \(3048503040000000\) \([2]\) \(1769472\) \(2.0039\)  
158400.bb3 158400cb1 \([0, 0, 0, -37200, 3611000]\) \(-488095744/200475\) \(-2338340400000000\) \([2]\) \(884736\) \(1.6573\) \(\Gamma_0(N)\)-optimal
158400.bb4 158400cb3 \([0, 0, 0, 286800, -39481000]\) \(223673040896/187171875\) \(-2183172750000000000\) \([2]\) \(2654208\) \(2.2066\)