Properties

Label 15808q
Number of curves $1$
Conductor $15808$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("q1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 15808q1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(13\)\(1 - T\)
\(19\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + 3 T^{2}\) 1.3.a
\(5\) \( 1 - 3 T + 5 T^{2}\) 1.5.ad
\(7\) \( 1 - 3 T + 7 T^{2}\) 1.7.ad
\(11\) \( 1 + 3 T + 11 T^{2}\) 1.11.d
\(17\) \( 1 + 7 T + 17 T^{2}\) 1.17.h
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 - 8 T + 29 T^{2}\) 1.29.ai
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 15808q do not have complex multiplication.

Modular form 15808.2.a.q

Copy content sage:E.q_eigenform(10)
 
\(q - 2 q^{5} - 2 q^{7} - 3 q^{9} - 6 q^{11} + q^{13} + q^{17} - q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 15808q

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
15808.k1 15808q1 \([0, 0, 0, 4, -24]\) \(6912/247\) \(-252928\) \([]\) \(1280\) \(-0.28334\) \(\Gamma_0(N)\)-optimal