Properties

Label 15730.h
Number of curves $1$
Conductor $15730$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("h1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 15730.h1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(5\)\(1 - T\)
\(11\)\(1\)
\(13\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + T + 3 T^{2}\) 1.3.b
\(7\) \( 1 + 4 T + 7 T^{2}\) 1.7.e
\(17\) \( 1 + T + 17 T^{2}\) 1.17.b
\(19\) \( 1 - 6 T + 19 T^{2}\) 1.19.ag
\(23\) \( 1 + 7 T + 23 T^{2}\) 1.23.h
\(29\) \( 1 - 5 T + 29 T^{2}\) 1.29.af
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 15730.h do not have complex multiplication.

Modular form 15730.2.a.h

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} - q^{3} + q^{4} + q^{5} + q^{6} - 4 q^{7} - q^{8} - 2 q^{9} - q^{10} - q^{12} - q^{13} + 4 q^{14} - q^{15} + q^{16} - q^{17} + 2 q^{18} + 6 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 15730.h

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
15730.h1 15730m1 \([1, 1, 0, -1573332, -760059824]\) \(3559589366328163617361/1003976272000000\) \(121481128912000000\) \([]\) \(362880\) \(2.2593\) \(\Gamma_0(N)\)-optimal