Show commands: SageMath
Rank
The elliptic curves in class 15600q have rank \(0\).
L-function data
Bad L-factors: |
| ||||||||||||||||||||||||
Good L-factors: |
| ||||||||||||||||||||||||
See L-function page for more information |
Complex multiplication
The elliptic curves in class 15600q do not have complex multiplication.Modular form 15600.2.a.q
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with Cremona labels.
Elliptic curves in class 15600q
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
15600.bp3 | 15600q1 | \([0, 1, 0, -2783, -57312]\) | \(9538484224/26325\) | \(6581250000\) | \([2]\) | \(18432\) | \(0.75689\) | \(\Gamma_0(N)\)-optimal |
15600.bp2 | 15600q2 | \([0, 1, 0, -3908, -7812]\) | \(1650587344/950625\) | \(3802500000000\) | \([2, 2]\) | \(36864\) | \(1.1035\) | |
15600.bp1 | 15600q3 | \([0, 1, 0, -41408, 3217188]\) | \(490757540836/2142075\) | \(34273200000000\) | \([2]\) | \(73728\) | \(1.4500\) | |
15600.bp4 | 15600q4 | \([0, 1, 0, 15592, -46812]\) | \(26198797244/15234375\) | \(-243750000000000\) | \([2]\) | \(73728\) | \(1.4500\) |