Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2=x^3+x^2+192x+22068\)
|
(homogenize, simplify) |
|
\(y^2z=x^3+x^2z+192xz^2+22068z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3+15525x+16040970\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(-6, 144)$ | $0.17807377282832867659348787413$ | $\infty$ |
Integral points
\((-21,\pm 96)\), \((-6,\pm 144)\), \((12,\pm 162)\), \((282,\pm 4752)\)
Invariants
| Conductor: | $N$ | = | \( 15600 \) | = | $2^{4} \cdot 3 \cdot 5^{2} \cdot 13$ |
|
| Discriminant: | $\Delta$ | = | $-209616076800$ | = | $-1 \cdot 2^{15} \cdot 3^{9} \cdot 5^{2} \cdot 13 $ |
|
| j-invariant: | $j$ | = | \( \frac{7604375}{2047032} \) | = | $2^{-3} \cdot 3^{-9} \cdot 5^{4} \cdot 13^{-1} \cdot 23^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $0.85155158870404100791740299569$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.10983524392825436393328901464$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $1.2424641644396797$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $3.471881967741136$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
| Mordell-Weil rank: | $r$ | = | $ 1$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $0.17807377282832867659348787413$ |
|
| Real period: | $\Omega$ | ≈ | $0.77465433934170026857497140679$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 36 $ = $ 2^{2}\cdot3^{2}\cdot1\cdot1 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |
|
| Special value: | $ L'(E,1)$ | ≈ | $4.9660423503988668279433731106 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 4.966042350 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.774654 \cdot 0.178074 \cdot 36}{1^2} \\ & \approx 4.966042350\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
| Modular degree: | 15552 |
|
| $ \Gamma_0(N) $-optimal: | yes | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $4$ | $I_{7}^{*}$ | additive | -1 | 4 | 15 | 3 |
| $3$ | $9$ | $I_{9}$ | split multiplicative | -1 | 1 | 9 | 9 |
| $5$ | $1$ | $II$ | additive | 1 | 2 | 2 | 0 |
| $13$ | $1$ | $I_{1}$ | nonsplit multiplicative | 1 | 1 | 1 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $3$ | 3B | 3.4.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 1560 = 2^{3} \cdot 3 \cdot 5 \cdot 13 \), index $16$, genus $0$, and generators
$\left(\begin{array}{rr} 4 & 3 \\ 9 & 7 \end{array}\right),\left(\begin{array}{rr} 1251 & 2 \\ 10 & 7 \end{array}\right),\left(\begin{array}{rr} 1555 & 6 \\ 1554 & 7 \end{array}\right),\left(\begin{array}{rr} 846 & 721 \\ 523 & 1254 \end{array}\right),\left(\begin{array}{rr} 1081 & 6 \\ 123 & 19 \end{array}\right),\left(\begin{array}{rr} 1169 & 1554 \\ 0 & 1559 \end{array}\right),\left(\begin{array}{rr} 781 & 6 \\ 783 & 19 \end{array}\right),\left(\begin{array}{rr} 1 & 6 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 8 & 11 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 6 & 1 \end{array}\right)$.
The torsion field $K:=\Q(E[1560])$ is a degree-$57967902720$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/1560\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | additive | $4$ | \( 975 = 3 \cdot 5^{2} \cdot 13 \) |
| $3$ | split multiplicative | $4$ | \( 5200 = 2^{4} \cdot 5^{2} \cdot 13 \) |
| $5$ | additive | $10$ | \( 624 = 2^{4} \cdot 3 \cdot 13 \) |
| $13$ | nonsplit multiplicative | $14$ | \( 1200 = 2^{4} \cdot 3 \cdot 5^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
3.
Its isogeny class 15600cg
consists of 2 curves linked by isogenies of
degree 3.
Twists
The minimal quadratic twist of this elliptic curve is 1950o1, its twist by $-4$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{-5}) \) | \(\Z/3\Z\) | not in database |
| $3$ | 3.1.7800.1 | \(\Z/2\Z\) | not in database |
| $6$ | 6.0.18982080000.1 | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
| $6$ | 6.2.154229400000.10 | \(\Z/3\Z\) | not in database |
| $6$ | 6.0.4867200000.2 | \(\Z/6\Z\) | not in database |
| $12$ | deg 12 | \(\Z/4\Z\) | not in database |
| $12$ | deg 12 | \(\Z/3\Z \oplus \Z/3\Z\) | not in database |
| $12$ | deg 12 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $18$ | 18.0.2528246358577140552000000000000000.3 | \(\Z/9\Z\) | not in database |
| $18$ | 18.2.2539499664169995645321216000000000000000.1 | \(\Z/6\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | add | split | add | ord | ss | nonsplit | ss | ord | ss | ord | ord | ord | ord | ord | ord |
| $\lambda$-invariant(s) | - | 2 | - | 1 | 1,1 | 1 | 1,1 | 1 | 1,1 | 1 | 1 | 1 | 1 | 1 | 1 |
| $\mu$-invariant(s) | - | 0 | - | 0 | 0,0 | 0 | 0,0 | 0 | 0,0 | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
Note: $p$-adic regulator data only exists for primes $p\ge 5$ of good ordinary reduction.