Properties

Label 155584bf
Number of curves $2$
Conductor $155584$
CM no
Rank $2$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bf1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 155584bf have rank \(2\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(11\)\(1 + T\)
\(13\)\(1 + T\)
\(17\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 - 2 T + 3 T^{2}\) 1.3.ac
\(5\) \( 1 + T + 5 T^{2}\) 1.5.b
\(7\) \( 1 - T + 7 T^{2}\) 1.7.ab
\(19\) \( 1 + 19 T^{2}\) 1.19.a
\(23\) \( 1 + 3 T + 23 T^{2}\) 1.23.d
\(29\) \( 1 + 5 T + 29 T^{2}\) 1.29.f
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 155584bf do not have complex multiplication.

Modular form 155584.2.a.bf

Copy content sage:E.q_eigenform(10)
 
\(q + 2 q^{3} - 4 q^{5} + q^{9} - q^{11} - q^{13} - 8 q^{15} + q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 155584bf

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
155584.bc1 155584bf1 \([0, -1, 0, -2465, -43999]\) \(6321363049/347633\) \(91129905152\) \([2]\) \(229376\) \(0.85851\) \(\Gamma_0(N)\)-optimal
155584.bc2 155584bf2 \([0, -1, 0, 1695, -181279]\) \(2053225511/55006237\) \(-14419554992128\) \([2]\) \(458752\) \(1.2051\)