Properties

Label 155232.r
Number of curves $4$
Conductor $155232$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("r1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 155232.r have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(7\)\(1\)
\(11\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 2 T + 5 T^{2}\) 1.5.c
\(13\) \( 1 + 2 T + 13 T^{2}\) 1.13.c
\(17\) \( 1 - 2 T + 17 T^{2}\) 1.17.ac
\(19\) \( 1 - 4 T + 19 T^{2}\) 1.19.ae
\(23\) \( 1 + 4 T + 23 T^{2}\) 1.23.e
\(29\) \( 1 - 6 T + 29 T^{2}\) 1.29.ag
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 155232.r do not have complex multiplication.

Modular form 155232.2.a.r

Copy content sage:E.q_eigenform(10)
 
\(q - 2 q^{5} - q^{11} - 2 q^{13} + 2 q^{17} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 155232.r

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
155232.r1 155232q2 \([0, 0, 0, -22819251, 41956590746]\) \(29925549856274696/4851\) \(213018343921152\) \([2]\) \(3932160\) \(2.5933\)  
155232.r2 155232q4 \([0, 0, 0, -1644636, 441509600]\) \(1400416996672/570715299\) \(200491161151836893184\) \([2]\) \(3932160\) \(2.5933\)  
155232.r3 155232q1 \([0, 0, 0, -1426341, 655438700]\) \(58465284603328/23532201\) \(129168998295188544\) \([2, 2]\) \(1966080\) \(2.2467\) \(\Gamma_0(N)\)-optimal
155232.r4 155232q3 \([0, 0, 0, -1210251, 860853854]\) \(-4464412682696/4706920449\) \(-206691486088349864448\) \([2]\) \(3932160\) \(2.5933\)