Properties

Label 154800dw
Number of curves $4$
Conductor $154800$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("dw1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 154800dw have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(5\)\(1\)
\(43\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + 7 T^{2}\) 1.7.a
\(11\) \( 1 - 4 T + 11 T^{2}\) 1.11.ae
\(13\) \( 1 + 6 T + 13 T^{2}\) 1.13.g
\(17\) \( 1 + 2 T + 17 T^{2}\) 1.17.c
\(19\) \( 1 + 19 T^{2}\) 1.19.a
\(23\) \( 1 + 4 T + 23 T^{2}\) 1.23.e
\(29\) \( 1 + 2 T + 29 T^{2}\) 1.29.c
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 154800dw do not have complex multiplication.

Modular form 154800.2.a.dw

Copy content sage:E.q_eigenform(10)
 
\(q - 4 q^{7} - 2 q^{13} - 6 q^{17} - 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 154800dw

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
154800.l4 154800dw1 \([0, 0, 0, -8193075, -9022484750]\) \(35198225176082067/18035507200\) \(31165356441600000000\) \([2]\) \(5308416\) \(2.6920\) \(\Gamma_0(N)\)-optimal
154800.l2 154800dw2 \([0, 0, 0, -131073075, -577588244750]\) \(144118734029937784467/37867520\) \(65435074560000000\) \([2]\) \(10616832\) \(3.0386\)  
154800.l3 154800dw3 \([0, 0, 0, -25089075, 37580267250]\) \(1386456968640843/318028000000\) \(400623687936000000000000\) \([2]\) \(15925248\) \(3.2413\)  
154800.l1 154800dw4 \([0, 0, 0, -133089075, -558903732750]\) \(206956783279200843/12642726098000\) \(15926193778363776000000000\) \([2]\) \(31850496\) \(3.5879\)