Properties

Label 152880.fd
Number of curves $4$
Conductor $152880$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("fd1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 152880.fd have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 - T\)
\(5\)\(1 + T\)
\(7\)\(1\)
\(13\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(17\) \( 1 + 17 T^{2}\) 1.17.a
\(19\) \( 1 - 2 T + 19 T^{2}\) 1.19.ac
\(23\) \( 1 - 6 T + 23 T^{2}\) 1.23.ag
\(29\) \( 1 + 29 T^{2}\) 1.29.a
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 152880.fd do not have complex multiplication.

Modular form 152880.2.a.fd

Copy content sage:E.q_eigenform(10)
 
\(q + q^{3} - q^{5} + q^{9} - q^{13} - q^{15} + 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 152880.fd

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
152880.fd1 152880cd4 \([0, 1, 0, -684100776, -6887152094796]\) \(73474353581350183614361/576510977802240\) \(277815050352458685480960\) \([2]\) \(37324800\) \(3.6715\)  
152880.fd2 152880cd3 \([0, 1, 0, -41847976, -112412659276]\) \(-16818951115904497561/1592332281446400\) \(-767329487175219255705600\) \([2]\) \(18662400\) \(3.3249\)  
152880.fd3 152880cd2 \([0, 1, 0, -12545976, 639709524]\) \(453198971846635561/261896250564000\) \(126205263800746131456000\) \([2]\) \(12441600\) \(3.1222\)  
152880.fd4 152880cd1 \([0, 1, 0, 3134024, 81501524]\) \(7064514799444439/4094064000000\) \(-1972889745555456000000\) \([2]\) \(6220800\) \(2.7756\) \(\Gamma_0(N)\)-optimal