Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2+xy+y=x^3-x^2+15178x-1323331\)
|
(homogenize, simplify) |
|
\(y^2z+xyz+yz^2=x^3-x^2z+15178xz^2-1323331z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3+242853x-84450314\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z/{3}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(127, 1561)$ | $0$ | $3$ |
Integral points
\( \left(127, 1561\right) \), \( \left(127, -1689\right) \)
Invariants
| Conductor: | $N$ | = | \( 15210 \) | = | $2 \cdot 3^{2} \cdot 5 \cdot 13^{2}$ |
|
| Discriminant: | $\Delta$ | = | $-975982921875000$ | = | $-1 \cdot 2^{3} \cdot 3^{7} \cdot 5^{9} \cdot 13^{4} $ |
|
| j-invariant: | $j$ | = | \( \frac{18573478391}{46875000} \) | = | $2^{-3} \cdot 3^{-1} \cdot 5^{-9} \cdot 13^{2} \cdot 479^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.5600040454093255398496761922$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.15571478192142511546755775988$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $1.022438694321911$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.331255479505022$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |
|
| Mordell-Weil rank: | $r$ | = | $ 0$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |
|
| Real period: | $\Omega$ | ≈ | $0.25531074013752493245554728517$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 162 $ = $ 3\cdot2\cdot3^{2}\cdot3 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $3$ |
|
| Special value: | $ L(E,1)$ | ≈ | $4.5955933224754487841998511331 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $1$ (exact) |
|
BSD formula
$$\begin{aligned} 4.595593322 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.255311 \cdot 1.000000 \cdot 162}{3^2} \\ & \approx 4.595593322\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
| Modular degree: | 72576 |
|
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $3$ | $I_{3}$ | split multiplicative | -1 | 1 | 3 | 3 |
| $3$ | $2$ | $I_{1}^{*}$ | additive | -1 | 2 | 7 | 1 |
| $5$ | $9$ | $I_{9}$ | split multiplicative | -1 | 1 | 9 | 9 |
| $13$ | $3$ | $IV$ | additive | 1 | 2 | 4 | 0 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $3$ | 3B.1.1 | 3.8.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 120 = 2^{3} \cdot 3 \cdot 5 \), index $16$, genus $0$, and generators
$\left(\begin{array}{rr} 97 & 6 \\ 51 & 19 \end{array}\right),\left(\begin{array}{rr} 61 & 6 \\ 63 & 19 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 6 & 1 \end{array}\right),\left(\begin{array}{rr} 4 & 3 \\ 9 & 7 \end{array}\right),\left(\begin{array}{rr} 115 & 6 \\ 114 & 7 \end{array}\right),\left(\begin{array}{rr} 31 & 6 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 22 & 93 \\ 119 & 14 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 8 & 11 \end{array}\right),\left(\begin{array}{rr} 1 & 6 \\ 0 & 1 \end{array}\right)$.
The torsion field $K:=\Q(E[120])$ is a degree-$2211840$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/120\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | split multiplicative | $4$ | \( 7605 = 3^{2} \cdot 5 \cdot 13^{2} \) |
| $3$ | additive | $8$ | \( 169 = 13^{2} \) |
| $5$ | split multiplicative | $6$ | \( 3042 = 2 \cdot 3^{2} \cdot 13^{2} \) |
| $13$ | additive | $62$ | \( 90 = 2 \cdot 3^{2} \cdot 5 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
3.
Its isogeny class 15210bp
consists of 2 curves linked by isogenies of
degree 3.
Twists
The minimal quadratic twist of this elliptic curve is 5070i2, its twist by $-3$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{3}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $3$ | 3.1.20280.1 | \(\Z/6\Z\) | not in database |
| $6$ | 6.0.49353408000.1 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $6$ | 6.0.5059495467.5 | \(\Z/3\Z \oplus \Z/3\Z\) | not in database |
| $9$ | 9.3.4432603740656832.2 | \(\Z/9\Z\) | not in database |
| $12$ | deg 12 | \(\Z/12\Z\) | not in database |
| $18$ | 18.0.530495349885493368118239283458048000000.2 | \(\Z/3\Z \oplus \Z/6\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | split | add | split | ord | ord | add | ord | ord | ord | ord | ord | ord | ord | ord | ord |
| $\lambda$-invariant(s) | 3 | - | 1 | 0 | 0 | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| $\mu$-invariant(s) | 0 | - | 0 | 0 | 0 | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.