| Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
Manin constant |
| 5070.j2 |
5070i2 |
5070.j |
5070i |
$2$ |
$3$ |
\( 2 \cdot 3 \cdot 5 \cdot 13^{2} \) |
\( - 2^{3} \cdot 3 \cdot 5^{9} \cdot 13^{4} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.8.0.2 |
3B.1.2 |
$120$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$9072$ |
$1.010698$ |
$18573478391/46875000$ |
$1.02244$ |
$4.11636$ |
$[1, 0, 1, 1686, 49012]$ |
\(y^2+xy+y=x^3+1686x+49012\) |
3.8.0-3.a.1.1, 120.16.0.? |
$[ ]$ |
$1$ |
| 5070.v2 |
5070u2 |
5070.v |
5070u |
$2$ |
$3$ |
\( 2 \cdot 3 \cdot 5 \cdot 13^{2} \) |
\( - 2^{3} \cdot 3 \cdot 5^{9} \cdot 13^{10} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1560$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$117936$ |
$2.293171$ |
$18573478391/46875000$ |
$1.02244$ |
$5.92031$ |
$[1, 0, 0, 285015, 107394897]$ |
\(y^2+xy=x^3+285015x+107394897\) |
3.4.0.a.1, 39.8.0-3.a.1.2, 120.8.0.?, 1560.16.0.? |
$[ ]$ |
$1$ |
| 15210.e2 |
15210j2 |
15210.e |
15210j |
$2$ |
$3$ |
\( 2 \cdot 3^{2} \cdot 5 \cdot 13^{2} \) |
\( - 2^{3} \cdot 3^{7} \cdot 5^{9} \cdot 13^{10} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1560$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$943488$ |
$2.842480$ |
$18573478391/46875000$ |
$1.02244$ |
$5.92940$ |
$[1, -1, 0, 2565135, -2899662219]$ |
\(y^2+xy=x^3-x^2+2565135x-2899662219\) |
3.4.0.a.1, 39.8.0-3.a.1.1, 120.8.0.?, 1560.16.0.? |
$[ ]$ |
$1$ |
| 15210.br2 |
15210bp2 |
15210.br |
15210bp |
$2$ |
$3$ |
\( 2 \cdot 3^{2} \cdot 5 \cdot 13^{2} \) |
\( - 2^{3} \cdot 3^{7} \cdot 5^{9} \cdot 13^{4} \) |
$0$ |
$\Z/3\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.8.0.1 |
3B.1.1 |
$120$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$2$ |
$72576$ |
$1.560003$ |
$18573478391/46875000$ |
$1.02244$ |
$4.33126$ |
$[1, -1, 1, 15178, -1323331]$ |
\(y^2+xy+y=x^3-x^2+15178x-1323331\) |
3.8.0-3.a.1.2, 120.16.0.? |
$[ ]$ |
$1$ |
| 25350.s2 |
25350d2 |
25350.s |
25350d |
$2$ |
$3$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 13^{2} \) |
\( - 2^{3} \cdot 3 \cdot 5^{15} \cdot 13^{10} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1560$ |
$16$ |
$0$ |
$11.59528861$ |
$1$ |
|
$0$ |
$2830464$ |
$3.097893$ |
$18573478391/46875000$ |
$1.02244$ |
$5.93296$ |
$[1, 1, 0, 7125375, 13424362125]$ |
\(y^2+xy=x^3+x^2+7125375x+13424362125\) |
3.4.0.a.1, 120.8.0.?, 195.8.0.?, 312.8.0.?, 1560.16.0.? |
$[(20191505/8, 90653124605/8)]$ |
$1$ |
| 25350.cb2 |
25350bz2 |
25350.cb |
25350bz |
$2$ |
$3$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 13^{2} \) |
\( - 2^{3} \cdot 3 \cdot 5^{15} \cdot 13^{4} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$120$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$217728$ |
$1.815416$ |
$18573478391/46875000$ |
$1.02244$ |
$4.41532$ |
$[1, 1, 1, 42162, 6126531]$ |
\(y^2+xy+y=x^3+x^2+42162x+6126531\) |
3.4.0.a.1, 15.8.0-3.a.1.1, 24.8.0-3.a.1.6, 120.16.0.? |
$[ ]$ |
$1$ |
| 40560.f2 |
40560bj2 |
40560.f |
40560bj |
$2$ |
$3$ |
\( 2^{4} \cdot 3 \cdot 5 \cdot 13^{2} \) |
\( - 2^{15} \cdot 3 \cdot 5^{9} \cdot 13^{4} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$120$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$217728$ |
$1.703846$ |
$18573478391/46875000$ |
$1.02244$ |
$4.09356$ |
$[0, -1, 0, 26984, -3136784]$ |
\(y^2=x^3-x^2+26984x-3136784\) |
3.4.0.a.1, 12.8.0-3.a.1.2, 120.16.0.? |
$[ ]$ |
$1$ |
| 40560.bb2 |
40560bs2 |
40560.bb |
40560bs |
$2$ |
$3$ |
\( 2^{4} \cdot 3 \cdot 5 \cdot 13^{2} \) |
\( - 2^{15} \cdot 3 \cdot 5^{9} \cdot 13^{10} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1560$ |
$16$ |
$0$ |
$2.681849876$ |
$1$ |
|
$2$ |
$2830464$ |
$2.986320$ |
$18573478391/46875000$ |
$1.02244$ |
$5.54397$ |
$[0, -1, 0, 4560240, -6873273408]$ |
\(y^2=x^3-x^2+4560240x-6873273408\) |
3.4.0.a.1, 120.8.0.?, 156.8.0.?, 1560.16.0.? |
$[(1864, 90000)]$ |
$1$ |
| 76050.z2 |
76050bn2 |
76050.z |
76050bn |
$2$ |
$3$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 13^{2} \) |
\( - 2^{3} \cdot 3^{7} \cdot 5^{15} \cdot 13^{4} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$120$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1741824$ |
$2.364723$ |
$18573478391/46875000$ |
$1.02244$ |
$4.57022$ |
$[1, -1, 0, 379458, -165036884]$ |
\(y^2+xy=x^3-x^2+379458x-165036884\) |
3.4.0.a.1, 15.8.0-3.a.1.2, 24.8.0-3.a.1.5, 120.16.0.? |
$[ ]$ |
$1$ |
| 76050.fk2 |
76050el2 |
76050.fk |
76050el |
$2$ |
$3$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 13^{2} \) |
\( - 2^{3} \cdot 3^{7} \cdot 5^{15} \cdot 13^{10} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1560$ |
$16$ |
$0$ |
$14.58964418$ |
$1$ |
|
$0$ |
$22643712$ |
$3.647198$ |
$18573478391/46875000$ |
$1.02244$ |
$5.93951$ |
$[1, -1, 1, 64128370, -362393649003]$ |
\(y^2+xy+y=x^3-x^2+64128370x-362393649003\) |
3.4.0.a.1, 120.8.0.?, 195.8.0.?, 312.8.0.?, 1560.16.0.? |
$[(64087439/29, 514733951115/29)]$ |
$1$ |
| 121680.cc2 |
121680do2 |
121680.cc |
121680do |
$2$ |
$3$ |
\( 2^{4} \cdot 3^{2} \cdot 5 \cdot 13^{2} \) |
\( - 2^{15} \cdot 3^{7} \cdot 5^{9} \cdot 13^{10} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1560$ |
$16$ |
$0$ |
$20.35675951$ |
$1$ |
|
$0$ |
$22643712$ |
$3.535625$ |
$18573478391/46875000$ |
$1.02244$ |
$5.58676$ |
$[0, 0, 0, 41042157, 185537339858]$ |
\(y^2=x^3+41042157x+185537339858\) |
3.4.0.a.1, 120.8.0.?, 156.8.0.?, 1560.16.0.? |
$[(-647924663/554, 50863463196525/554)]$ |
$1$ |
| 121680.dr2 |
121680ey2 |
121680.dr |
121680ey |
$2$ |
$3$ |
\( 2^{4} \cdot 3^{2} \cdot 5 \cdot 13^{2} \) |
\( - 2^{15} \cdot 3^{7} \cdot 5^{9} \cdot 13^{4} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$120$ |
$16$ |
$0$ |
$0.158902240$ |
$1$ |
|
$32$ |
$1741824$ |
$2.253151$ |
$18573478391/46875000$ |
$1.02244$ |
$4.27243$ |
$[0, 0, 0, 242853, 84450314]$ |
\(y^2=x^3+242853x+84450314\) |
3.4.0.a.1, 12.8.0-3.a.1.1, 120.16.0.? |
$[(493, 18000), (13, 9360)]$ |
$1$ |
| 162240.j2 |
162240hs2 |
162240.j |
162240hs |
$2$ |
$3$ |
\( 2^{6} \cdot 3 \cdot 5 \cdot 13^{2} \) |
\( - 2^{21} \cdot 3 \cdot 5^{9} \cdot 13^{10} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1560$ |
$16$ |
$0$ |
$18.10043832$ |
$1$ |
|
$0$ |
$22643712$ |
$3.332893$ |
$18573478391/46875000$ |
$1.02244$ |
$5.25000$ |
$[0, -1, 0, 18240959, 54967946305]$ |
\(y^2=x^3-x^2+18240959x+54967946305\) |
3.4.0.a.1, 120.8.0.?, 312.8.0.?, 390.8.0.?, 1560.16.0.? |
$[(33029001/395, 14949383429824/395)]$ |
$1$ |
| 162240.ds2 |
162240hh2 |
162240.ds |
162240hh |
$2$ |
$3$ |
\( 2^{6} \cdot 3 \cdot 5 \cdot 13^{2} \) |
\( - 2^{21} \cdot 3 \cdot 5^{9} \cdot 13^{4} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$120$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1741824$ |
$2.050419$ |
$18573478391/46875000$ |
$1.02244$ |
$3.96719$ |
$[0, -1, 0, 107935, 24986337]$ |
\(y^2=x^3-x^2+107935x+24986337\) |
3.4.0.a.1, 24.8.0-3.a.1.1, 30.8.0-3.a.1.1, 120.16.0.? |
$[ ]$ |
$1$ |
| 162240.fw2 |
162240bt2 |
162240.fw |
162240bt |
$2$ |
$3$ |
\( 2^{6} \cdot 3 \cdot 5 \cdot 13^{2} \) |
\( - 2^{21} \cdot 3 \cdot 5^{9} \cdot 13^{10} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1560$ |
$16$ |
$0$ |
$59.13891715$ |
$1$ |
|
$0$ |
$22643712$ |
$3.332893$ |
$18573478391/46875000$ |
$1.02244$ |
$5.25000$ |
$[0, 1, 0, 18240959, -54967946305]$ |
\(y^2=x^3+x^2+18240959x-54967946305\) |
3.4.0.a.1, 120.8.0.?, 312.8.0.?, 780.8.0.?, 1560.16.0.? |
$[(564855261634588468972181479/179635098595, 13751932585345725193172013330802370822208/179635098595)]$ |
$1$ |
| 162240.gs2 |
162240e2 |
162240.gs |
162240e |
$2$ |
$3$ |
\( 2^{6} \cdot 3 \cdot 5 \cdot 13^{2} \) |
\( - 2^{21} \cdot 3 \cdot 5^{9} \cdot 13^{4} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$120$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1741824$ |
$2.050419$ |
$18573478391/46875000$ |
$1.02244$ |
$3.96719$ |
$[0, 1, 0, 107935, -24986337]$ |
\(y^2=x^3+x^2+107935x-24986337\) |
3.4.0.a.1, 24.8.0-3.a.1.3, 60.8.0-3.a.1.4, 120.16.0.? |
$[ ]$ |
$1$ |
| 202800.gn2 |
202800bt2 |
202800.gn |
202800bt |
$2$ |
$3$ |
\( 2^{4} \cdot 3 \cdot 5^{2} \cdot 13^{2} \) |
\( - 2^{15} \cdot 3 \cdot 5^{15} \cdot 13^{10} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1560$ |
$16$ |
$0$ |
$32.61843782$ |
$1$ |
|
$0$ |
$67931136$ |
$3.791039$ |
$18573478391/46875000$ |
$1.02244$ |
$5.60403$ |
$[0, 1, 0, 114005992, -858931164012]$ |
\(y^2=x^3+x^2+114005992x-858931164012\) |
3.4.0.a.1, 120.8.0.?, 312.8.0.?, 780.8.0.?, 1560.16.0.? |
$[(20923107349448937/953528, 3238265017030572293296875/953528)]$ |
$1$ |
| 202800.ji2 |
202800cs2 |
202800.ji |
202800cs |
$2$ |
$3$ |
\( 2^{4} \cdot 3 \cdot 5^{2} \cdot 13^{2} \) |
\( - 2^{15} \cdot 3 \cdot 5^{15} \cdot 13^{4} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$120$ |
$16$ |
$0$ |
$14.13014676$ |
$1$ |
|
$0$ |
$5225472$ |
$2.508564$ |
$18573478391/46875000$ |
$1.02244$ |
$4.34464$ |
$[0, 1, 0, 674592, -390748812]$ |
\(y^2=x^3+x^2+674592x-390748812\) |
3.4.0.a.1, 24.8.0-3.a.1.8, 60.8.0-3.a.1.1, 120.16.0.? |
$[(4212778/87, 8262796976/87)]$ |
$1$ |
| 248430.br2 |
248430br2 |
248430.br |
248430br |
$2$ |
$3$ |
\( 2 \cdot 3 \cdot 5 \cdot 7^{2} \cdot 13^{2} \) |
\( - 2^{3} \cdot 3 \cdot 5^{9} \cdot 7^{6} \cdot 13^{4} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$840$ |
$16$ |
$0$ |
$1.137594297$ |
$1$ |
|
$4$ |
$3265920$ |
$1.983652$ |
$18573478391/46875000$ |
$1.02244$ |
$3.76663$ |
$[1, 1, 0, 82638, -16728564]$ |
\(y^2+xy=x^3+x^2+82638x-16728564\) |
3.4.0.a.1, 21.8.0-3.a.1.2, 120.8.0.?, 840.16.0.? |
$[(587, 15019)]$ |
$1$ |
| 248430.gi2 |
248430gi2 |
248430.gi |
248430gi |
$2$ |
$3$ |
\( 2 \cdot 3 \cdot 5 \cdot 7^{2} \cdot 13^{2} \) |
\( - 2^{3} \cdot 3 \cdot 5^{9} \cdot 7^{6} \cdot 13^{10} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$10920$ |
$16$ |
$0$ |
$37.08700701$ |
$1$ |
|
$0$ |
$42456960$ |
$3.266129$ |
$18573478391/46875000$ |
$1.02244$ |
$5.00544$ |
$[1, 1, 1, 13965734, -36822483937]$ |
\(y^2+xy+y=x^3+x^2+13965734x-36822483937\) |
3.4.0.a.1, 120.8.0.?, 273.8.0.?, 10920.16.0.? |
$[(89705190644542339/4386199, 30193096154742664943074597/4386199)]$ |
$1$ |
| 486720.co2 |
486720co2 |
486720.co |
486720co |
$2$ |
$3$ |
\( 2^{6} \cdot 3^{2} \cdot 5 \cdot 13^{2} \) |
\( - 2^{21} \cdot 3^{7} \cdot 5^{9} \cdot 13^{4} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$120$ |
$16$ |
$0$ |
$6.733031281$ |
$1$ |
|
$0$ |
$13934592$ |
$2.599724$ |
$18573478391/46875000$ |
$1.02244$ |
$4.13773$ |
$[0, 0, 0, 971412, 675602512]$ |
\(y^2=x^3+971412x+675602512\) |
3.4.0.a.1, 24.8.0-3.a.1.4, 60.8.0-3.a.1.3, 120.16.0.? |
$[(-12886/5, 770112/5)]$ |
$1$ |
| 486720.fx2 |
486720fx2 |
486720.fx |
486720fx |
$2$ |
$3$ |
\( 2^{6} \cdot 3^{2} \cdot 5 \cdot 13^{2} \) |
\( - 2^{21} \cdot 3^{7} \cdot 5^{9} \cdot 13^{4} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$120$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$13934592$ |
$2.599724$ |
$18573478391/46875000$ |
$1.02244$ |
$4.13773$ |
$[0, 0, 0, 971412, -675602512]$ |
\(y^2=x^3+971412x-675602512\) |
3.4.0.a.1, 24.8.0-3.a.1.2, 30.8.0-3.a.1.2, 120.16.0.? |
$[ ]$ |
$1$ |
| 486720.kx2 |
486720kx2 |
486720.kx |
486720kx |
$2$ |
$3$ |
\( 2^{6} \cdot 3^{2} \cdot 5 \cdot 13^{2} \) |
\( - 2^{21} \cdot 3^{7} \cdot 5^{9} \cdot 13^{10} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1560$ |
$16$ |
$0$ |
$4.153721374$ |
$1$ |
|
$2$ |
$181149696$ |
$3.882198$ |
$18573478391/46875000$ |
$1.02244$ |
$5.31292$ |
$[0, 0, 0, 164168628, -1484298718864]$ |
\(y^2=x^3+164168628x-1484298718864\) |
3.4.0.a.1, 120.8.0.?, 312.8.0.?, 390.8.0.?, 1560.16.0.? |
$[(7432, 382500)]$ |
$1$ |
| 486720.om2 |
486720om2 |
486720.om |
486720om |
$2$ |
$3$ |
\( 2^{6} \cdot 3^{2} \cdot 5 \cdot 13^{2} \) |
\( - 2^{21} \cdot 3^{7} \cdot 5^{9} \cdot 13^{10} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1560$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$181149696$ |
$3.882198$ |
$18573478391/46875000$ |
$1.02244$ |
$5.31292$ |
$[0, 0, 0, 164168628, 1484298718864]$ |
\(y^2=x^3+164168628x+1484298718864\) |
3.4.0.a.1, 120.8.0.?, 312.8.0.?, 780.8.0.?, 1560.16.0.? |
$[ ]$ |
$1$ |