Properties

Label 15210.ba
Number of curves $4$
Conductor $15210$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("ba1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 15210.ba have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 - T\)
\(3\)\(1\)
\(5\)\(1 + T\)
\(13\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + 2 T + 7 T^{2}\) 1.7.c
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(17\) \( 1 + 17 T^{2}\) 1.17.a
\(19\) \( 1 + 2 T + 19 T^{2}\) 1.19.c
\(23\) \( 1 - 6 T + 23 T^{2}\) 1.23.ag
\(29\) \( 1 + 29 T^{2}\) 1.29.a
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 15210.ba do not have complex multiplication.

Modular form 15210.2.a.ba

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} + q^{4} - q^{5} - 2 q^{7} + q^{8} - q^{10} - 2 q^{14} + q^{16} - 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 3 & 6 & 2 \\ 3 & 1 & 2 & 6 \\ 6 & 2 & 1 & 3 \\ 2 & 6 & 3 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 15210.ba

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
15210.ba1 15210bf4 \([1, -1, 1, -1819148, 896784581]\) \(189208196468929/10860320250\) \(38214684122149460250\) \([2]\) \(387072\) \(2.5116\)  
15210.ba2 15210bf2 \([1, -1, 1, -313358, -67140043]\) \(967068262369/4928040\) \(17340510003958440\) \([2]\) \(129024\) \(1.9623\)  
15210.ba3 15210bf1 \([1, -1, 1, -9158, -2162923]\) \(-24137569/561600\) \(-1976126496177600\) \([2]\) \(64512\) \(1.6157\) \(\Gamma_0(N)\)-optimal
15210.ba4 15210bf3 \([1, -1, 1, 82102, 57192581]\) \(17394111071/411937500\) \(-1449502508046937500\) \([2]\) \(193536\) \(2.1650\)