Properties

Label 151008.bu
Number of curves $4$
Conductor $151008$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bu1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 151008.bu have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 - T\)
\(11\)\(1\)
\(13\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 - 2 T + 5 T^{2}\) 1.5.ac
\(7\) \( 1 + 7 T^{2}\) 1.7.a
\(17\) \( 1 - 6 T + 17 T^{2}\) 1.17.ag
\(19\) \( 1 + 4 T + 19 T^{2}\) 1.19.e
\(23\) \( 1 + 4 T + 23 T^{2}\) 1.23.e
\(29\) \( 1 - 2 T + 29 T^{2}\) 1.29.ac
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 151008.bu do not have complex multiplication.

Modular form 151008.2.a.bu

Copy content sage:E.q_eigenform(10)
 
\(q + q^{3} + 2 q^{5} + q^{9} - q^{13} + 2 q^{15} + 6 q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 151008.bu

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
151008.bu1 151008bj4 \([0, 1, 0, -187832, -31364280]\) \(807995051144/938223\) \(851005069364736\) \([2]\) \(737280\) \(1.7772\)  
151008.bu2 151008bj2 \([0, 1, 0, -134592, 18803772]\) \(297275150024/2827539\) \(2564688803010048\) \([2]\) \(737280\) \(1.7772\)  
151008.bu3 151008bj1 \([0, 1, 0, -14802, -218880]\) \(3163575232/1656369\) \(187798958208576\) \([2, 2]\) \(368640\) \(1.4306\) \(\Gamma_0(N)\)-optimal
151008.bu4 151008bj3 \([0, 1, 0, 55983, -1648737]\) \(2674043072/1712997\) \(-12430043866386432\) \([2]\) \(737280\) \(1.7772\)