Properties

Label 148720a
Number of curves $1$
Conductor $148720$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("a1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 148720a1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(5\)\(1 + T\)
\(11\)\(1 - T\)
\(13\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + 3 T + 3 T^{2}\) 1.3.d
\(7\) \( 1 + T + 7 T^{2}\) 1.7.b
\(17\) \( 1 + 3 T + 17 T^{2}\) 1.17.d
\(19\) \( 1 - T + 19 T^{2}\) 1.19.ab
\(23\) \( 1 - 2 T + 23 T^{2}\) 1.23.ac
\(29\) \( 1 - T + 29 T^{2}\) 1.29.ab
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 148720a do not have complex multiplication.

Modular form 148720.2.a.a

Copy content sage:E.q_eigenform(10)
 
\(q - 3 q^{3} - q^{5} - q^{7} + 6 q^{9} + q^{11} + 3 q^{15} - 3 q^{17} + q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 148720a

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
148720.a1 148720a1 \([0, 0, 0, -153283, -26025662]\) \(-20145851361/3141710\) \(-62113522087485440\) \([]\) \(1806336\) \(1.9510\) \(\Gamma_0(N)\)-optimal