Properties

Label 148200.k
Number of curves $4$
Conductor $148200$
CM no
Rank $2$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("k1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 148200.k have rank \(2\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 + T\)
\(5\)\(1\)
\(13\)\(1 + T\)
\(19\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + 7 T^{2}\) 1.7.a
\(11\) \( 1 + 4 T + 11 T^{2}\) 1.11.e
\(17\) \( 1 - 6 T + 17 T^{2}\) 1.17.ag
\(23\) \( 1 + 4 T + 23 T^{2}\) 1.23.e
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 148200.k do not have complex multiplication.

Modular form 148200.2.a.k

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} + q^{9} - 4 q^{11} - q^{13} + 6 q^{17} - q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 148200.k

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
148200.k1 148200bc3 \([0, -1, 0, -623808, -63548388]\) \(1677865892403172/861235747047\) \(13779771952752000000\) \([2]\) \(2949120\) \(2.3647\)  
148200.k2 148200bc2 \([0, -1, 0, -500308, -135919388]\) \(3462397543530448/3602520441\) \(14410081764000000\) \([2, 2]\) \(1474560\) \(2.0181\)  
148200.k3 148200bc1 \([0, -1, 0, -500183, -135990888]\) \(55356847905445888/60021\) \(15005250000\) \([2]\) \(737280\) \(1.6715\) \(\Gamma_0(N)\)-optimal
148200.k4 148200bc4 \([0, -1, 0, -378808, -203716388]\) \(-375718260235972/904469833683\) \(-14471517338928000000\) \([2]\) \(2949120\) \(2.3647\)