Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
| \(y^2+xy+y=x^3-26326317x+51989348491\) | (homogenize, simplify) | 
| \(y^2z+xyz+yz^2=x^3-26326317xz^2+51989348491z^3\) | (dehomogenize, simplify) | 
| \(y^2=x^3-34118906211x+2425717399926366\) | (homogenize, minimize) | 
Mordell-Weil group structure
\(\Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order | 
|---|---|---|
| $(2965, -1483)$ | $0$ | $2$ | 
Integral points
      
    \( \left(2965, -1483\right) \)
    
    
    
        
    
    
        
    
      
Invariants
| Conductor: | $N$ | = | \( 146523 \) | = | $3 \cdot 13^{2} \cdot 17^{2}$ |  | 
| Discriminant: | $\Delta$ | = | $3012532754224259097$ | = | $3^{2} \cdot 13^{8} \cdot 17^{7} $ |  | 
| j-invariant: | $j$ | = | \( \frac{17319700013617}{25857} \) | = | $3^{-2} \cdot 13^{-2} \cdot 17^{-1} \cdot 25873^{3}$ |  | 
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |  | ||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.8145165251818363178875572630$ |  | ||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.11543517442295990973604623328$ |  | ||
| $abc$ quality: | $Q$ | ≈ | $0.9352778820672346$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $5.285596573712255$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |  | 
| Mordell-Weil rank: | $r$ | = | $ 0$ |  | 
| Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |  | 
| Real period: | $\Omega$ | ≈ | $0.21557576213174736361036467517$ |  | 
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 32 $ = $ 2\cdot2^{2}\cdot2^{2} $ |  | 
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |  | 
| Special value: | $ L(E,1)$ | ≈ | $1.7246060970539789088829174014 $ |  | 
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $1$ (exact) |  | 
BSD formula
$$\begin{aligned} 1.724606097 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.215576 \cdot 1.000000 \cdot 32}{2^2} \\ & \approx 1.724606097\end{aligned}$$
Modular invariants
Modular form 146523.2.a.y
For more coefficients, see the Downloads section to the right.
| Modular degree: | 6193152 |  | 
| $ \Gamma_0(N) $-optimal: | yes | |
| Manin constant: | 1 |  | 
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 3 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ | 
|---|---|---|---|---|---|---|---|
| $3$ | $2$ | $I_{2}$ | split multiplicative | -1 | 1 | 2 | 2 | 
| $13$ | $4$ | $I_{2}^{*}$ | additive | 1 | 2 | 8 | 2 | 
| $17$ | $4$ | $I_{1}^{*}$ | additive | 1 | 2 | 7 | 1 | 
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image | 
|---|---|---|
| $2$ | 2B | 16.48.0.93 | 
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 3536 = 2^{4} \cdot 13 \cdot 17 \), index $192$, genus $1$, and generators
$\left(\begin{array}{rr} 3523 & 3520 \\ 1344 & 315 \end{array}\right),\left(\begin{array}{rr} 5 & 4 \\ 3532 & 3533 \end{array}\right),\left(\begin{array}{rr} 2696 & 3535 \\ 545 & 3526 \end{array}\right),\left(\begin{array}{rr} 1 & 16 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 16 \\ 892 & 1013 \end{array}\right),\left(\begin{array}{rr} 3521 & 16 \\ 3520 & 17 \end{array}\right),\left(\begin{array}{rr} 15 & 2 \\ 3438 & 3523 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 16 & 1 \end{array}\right),\left(\begin{array}{rr} 3105 & 16 \\ 2410 & 2943 \end{array}\right)$.
The torsion field $K:=\Q(E[3536])$ is a degree-$262787825664$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/3536\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor | 
|---|---|---|---|
| $2$ | good | $2$ | \( 48841 = 13^{2} \cdot 17^{2} \) | 
| $3$ | split multiplicative | $4$ | \( 48841 = 13^{2} \cdot 17^{2} \) | 
| $13$ | additive | $98$ | \( 867 = 3 \cdot 17^{2} \) | 
| $17$ | additive | $162$ | \( 507 = 3 \cdot 13^{2} \) | 
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2, 4 and 8.
Its isogeny class 146523.y
consists of 6 curves linked by isogenies of
degrees dividing 8.
Twists
The minimal quadratic twist of this elliptic curve is 663.a4, its twist by $221$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve | 
|---|---|---|---|
| $2$ | \(\Q(\sqrt{17}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database | 
| $2$ | \(\Q(\sqrt{221}) \) | \(\Z/8\Z\) | not in database | 
| $2$ | \(\Q(\sqrt{13}) \) | \(\Z/4\Z\) | not in database | 
| $4$ | \(\Q(\sqrt{13}, \sqrt{17})\) | \(\Z/2\Z \oplus \Z/8\Z\) | not in database | 
| $8$ | 8.0.14295255491821824.70 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database | 
| $8$ | 8.0.14295255491821824.92 | \(\Z/8\Z\) | not in database | 
| $8$ | 8.8.116507435287321.1 | \(\Z/2\Z \oplus \Z/16\Z\) | not in database | 
| $8$ | deg 8 | \(\Z/6\Z\) | not in database | 
| $16$ | deg 16 | \(\Z/4\Z \oplus \Z/8\Z\) | not in database | 
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/16\Z\) | not in database | 
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database | 
| $16$ | deg 16 | \(\Z/24\Z\) | not in database | 
| $16$ | deg 16 | \(\Z/12\Z\) | not in database | 
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 13 | 17 | 
|---|---|---|---|---|
| Reduction type | ord | split | add | add | 
| $\lambda$-invariant(s) | 7 | 1 | - | - | 
| $\mu$-invariant(s) | 0 | 0 | - | - | 
All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 3$ of good reduction are zero.
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.
