L(s) = 1 | + 2-s + 3-s − 4-s − 2·5-s + 6-s − 3·8-s + 9-s − 2·10-s + 4·11-s − 12-s − 2·15-s − 16-s + 18-s + 4·19-s + 2·20-s + 4·22-s − 3·24-s − 25-s + 27-s + 2·29-s − 2·30-s − 8·31-s + 5·32-s + 4·33-s − 36-s − 2·37-s + 4·38-s + ⋯ |
L(s) = 1 | + 0.707·2-s + 0.577·3-s − 1/2·4-s − 0.894·5-s + 0.408·6-s − 1.06·8-s + 1/3·9-s − 0.632·10-s + 1.20·11-s − 0.288·12-s − 0.516·15-s − 1/4·16-s + 0.235·18-s + 0.917·19-s + 0.447·20-s + 0.852·22-s − 0.612·24-s − 1/5·25-s + 0.192·27-s + 0.371·29-s − 0.365·30-s − 1.43·31-s + 0.883·32-s + 0.696·33-s − 1/6·36-s − 0.328·37-s + 0.648·38-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 146523 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 146523 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.724606097\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.724606097\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 - T \) |
| 13 | \( 1 \) |
| 17 | \( 1 \) |
good | 2 | \( 1 - T + p T^{2} \) |
| 5 | \( 1 + 2 T + p T^{2} \) |
| 7 | \( 1 + p T^{2} \) |
| 11 | \( 1 - 4 T + p T^{2} \) |
| 19 | \( 1 - 4 T + p T^{2} \) |
| 23 | \( 1 + p T^{2} \) |
| 29 | \( 1 - 2 T + p T^{2} \) |
| 31 | \( 1 + 8 T + p T^{2} \) |
| 37 | \( 1 + 2 T + p T^{2} \) |
| 41 | \( 1 - 2 T + p T^{2} \) |
| 43 | \( 1 + 4 T + p T^{2} \) |
| 47 | \( 1 + 8 T + p T^{2} \) |
| 53 | \( 1 + 10 T + p T^{2} \) |
| 59 | \( 1 + 4 T + p T^{2} \) |
| 61 | \( 1 + 14 T + p T^{2} \) |
| 67 | \( 1 - 4 T + p T^{2} \) |
| 71 | \( 1 + p T^{2} \) |
| 73 | \( 1 + 14 T + p T^{2} \) |
| 79 | \( 1 - 8 T + p T^{2} \) |
| 83 | \( 1 - 4 T + p T^{2} \) |
| 89 | \( 1 - 6 T + p T^{2} \) |
| 97 | \( 1 + 6 T + p T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.35865530903204, −13.00649172109934, −12.36406056834694, −12.05721089511280, −11.64910743013071, −11.14691637624011, −10.58214314268574, −9.724187687426785, −9.454606337519330, −9.111012896066730, −8.462162166092363, −8.065145587526494, −7.533371263445458, −7.027304419709981, −6.356900737875643, −5.982968549445337, −5.172155871754265, −4.737947167632555, −4.243553587397301, −3.672887575062311, −3.331512692957827, −2.942888177411667, −1.836168079109716, −1.332221749924573, −0.3405689041122532,
0.3405689041122532, 1.332221749924573, 1.836168079109716, 2.942888177411667, 3.331512692957827, 3.672887575062311, 4.243553587397301, 4.737947167632555, 5.172155871754265, 5.982968549445337, 6.356900737875643, 7.027304419709981, 7.533371263445458, 8.065145587526494, 8.462162166092363, 9.111012896066730, 9.454606337519330, 9.724187687426785, 10.58214314268574, 11.14691637624011, 11.64910743013071, 12.05721089511280, 12.36406056834694, 13.00649172109934, 13.35865530903204