Show commands: SageMath
Rank
The elliptic curves in class 145200fq have rank \(1\).
L-function data
| Bad L-factors: |
| ||||||||||||||||||||||||
| Good L-factors: |
| ||||||||||||||||||||||||
| See L-function page for more information | |||||||||||||||||||||||||
Complex multiplication
The elliptic curves in class 145200fq do not have complex multiplication.Modular form 145200.2.a.fq
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with Cremona labels.
Elliptic curves in class 145200fq
| LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
|---|---|---|---|---|---|---|---|---|
| 145200.dd3 | 145200fq1 | \([0, -1, 0, -67446408, -213176444688]\) | \(299270638153369/1069200\) | \(121225793356800000000\) | \([2]\) | \(11059200\) | \(3.0717\) | \(\Gamma_0(N)\)-optimal |
| 145200.dd2 | 145200fq2 | \([0, -1, 0, -68414408, -206741180688]\) | \(312341975961049/17862322500\) | \(2025228410267040000000000\) | \([2, 2]\) | \(22118400\) | \(3.4182\) | |
| 145200.dd1 | 145200fq3 | \([0, -1, 0, -201514408, 842086819312]\) | \(7981893677157049/1917731420550\) | \(217432204359742627200000000\) | \([2]\) | \(44236800\) | \(3.7648\) | |
| 145200.dd4 | 145200fq4 | \([0, -1, 0, 49197592, -843727772688]\) | \(116149984977671/2779502343750\) | \(-315139708902150000000000000\) | \([2]\) | \(44236800\) | \(3.7648\) |