Properties

Label 144400.bb
Number of curves $4$
Conductor $144400$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bb1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 144400.bb have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(5\)\(1\)
\(19\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + T + 3 T^{2}\) 1.3.b
\(7\) \( 1 - 2 T + 7 T^{2}\) 1.7.ac
\(11\) \( 1 - 3 T + 11 T^{2}\) 1.11.ad
\(13\) \( 1 + 4 T + 13 T^{2}\) 1.13.e
\(17\) \( 1 - 3 T + 17 T^{2}\) 1.17.ad
\(23\) \( 1 - 6 T + 23 T^{2}\) 1.23.ag
\(29\) \( 1 + 29 T^{2}\) 1.29.a
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 144400.bb do not have complex multiplication.

Modular form 144400.2.a.bb

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} + 2 q^{7} - 2 q^{9} + 3 q^{11} - 4 q^{13} + 3 q^{17} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 3 & 15 & 5 \\ 3 & 1 & 5 & 15 \\ 15 & 5 & 1 & 3 \\ 5 & 15 & 3 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 144400.bb

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
144400.bb1 144400o4 \([0, -1, 0, -18125208, -29695651088]\) \(-349938025/8\) \(-15054681920000000000\) \([]\) \(4860000\) \(2.7933\)  
144400.bb2 144400o3 \([0, -1, 0, -75208, -93651088]\) \(-25/2\) \(-3763670480000000000\) \([]\) \(1620000\) \(2.2440\)  
144400.bb3 144400o1 \([0, -1, 0, -17448, 1075312]\) \(-121945/32\) \(-154159942860800\) \([]\) \(324000\) \(1.4393\) \(\Gamma_0(N)\)-optimal
144400.bb4 144400o2 \([0, -1, 0, 126952, -7935248]\) \(46969655/32768\) \(-157859781489459200\) \([]\) \(972000\) \(1.9886\)