Show commands: SageMath
Rank
The elliptic curves in class 144150es have rank \(0\).
L-function data
| Bad L-factors: |
| |||||||||||||||||||||||||||
| Good L-factors: |
| |||||||||||||||||||||||||||
| See L-function page for more information | ||||||||||||||||||||||||||||
Complex multiplication
The elliptic curves in class 144150es do not have complex multiplication.Modular form 144150.2.a.es
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with Cremona labels.
Elliptic curves in class 144150es
| LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
|---|---|---|---|---|---|---|---|---|
| 144150.q2 | 144150es1 | \([1, 1, 0, -9828531900, 388191813282000]\) | \(-254164210474783519/10497600000000\) | \(-4336759024904060775000000000000\) | \([2]\) | \(365690880\) | \(4.6459\) | \(\Gamma_0(N)\)-optimal |
| 144150.q1 | 144150es2 | \([1, 1, 0, -158783531900, 24353114898282000]\) | \(1071679233972039583519/1721868840000\) | \(711336899059888568619375000000\) | \([2]\) | \(731381760\) | \(4.9925\) |